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ABSTRACT

Nanosatellites, i.e. spacecraft that weigh between 1 and 10 kg, are drawing increasing interest as platforms
for conducting on-orbit science. This trend is primarily driven by the ability to piggyback nanosatellites on
the launch of large spacecraft and hence achieve orbit at greatly reduced cost. The CubeSat platform is a
standardized nanosatellite configuration, consisting of one, two, or three 10 cm x 10 cm x 10 cm units (1, 2,
or 3 “U”s) arranged in a row. We present a CubeSat-based concept for the discovery of transiting exoplanets
around the nearest and brightest Sun-like stars. The spacecraft prototype—termed ExoplanetSat—is a 3U space
telescope capable of monitoring a single target star from low Earth orbit. Given the volume limitations of
the CubeSat form factor, designing a capable spacecraft requires overcoming significant challenges. This work
presents the initial satellite configuration along with several subsystem-specific solutions to the aforementioned
constraints. An optical design based on a modified commercial off-the-shelf camera lens is given. We also
describe a novel two-stage attitude control architecture that combines 3-axis reaction wheels for coarse pointing
with a piezoelectric translation stage at the focal plane for fine pointing. Modeling and simulation results are
used to demonstrate feasibility by quantifying ExoplanetSat pointing precision, signal-to-noise ratio, guide star
magnitude, and additional design parameters which determine system performance.

Keywords: Exoplanets, transit detection method, CubeSat, nanosatellite, jitter noise, photometric precision.

1. INTRODUCTION

The detection and characterization of exoplanets—i.e. planets orbiting stars outside our solar system—is a recent
and very active area of astronomy. Hundreds of exoplanets have been discovered since the mid-1990s, however
the majority of these planets are gas giants (see Figure 1). Given the expected composition and temperatures
of such exoplanets, it is highly unlikely that the planets discovered so far can support life. The current “holy
grail” of the search for exoplanets is a true Earth analog: an Earth-like (i.e. small, rocky) planet orbiting in the
habitable zone of a Sun-like star. The habitable zone is the orbital region in which temperatures allow water to
exist in liquid form on the surface of a planet. As of yet, no missions have discovered these Earth analogs. A
mission designed to detect Earths can also more easily detect larger or more massive planets in more favorable
orbits.

ExoplanetSat is a miniature space telescope, currently in the conceptual design phase, intended to detecting
Earth-like planets orbiting nearby bright Sun-like stars. This work describes the spacecraft baseline and initial
feasibility analysis. Once a single ExoplanetSat prototype has flown successfully, replicated fabrication will
produce subsequent copies based on the demonstrated design. This will allow for the monitoring of multiple
target stars simultaneously.
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Figure 1. Known exoplanets plotted according to mass and semi-major orbital axis (normalized by Earth) and detection
method. Data from [http://exoplanets.eu/].

1.1 Science case

Several methods exist for detecting exoplanets, with radial velocity measurements being the approach that
has yielded the most detections. However, physical characterization of exoplanet atmospheres is desirable and
not possible with radial velocity measurements alone. Atmosphere observations can potentially lead to the
identification of biosignature gases or habitability indicators (e.g. water vapor, methane, carbon dioxide, oxygen,
etc).1 A requirement for physical characterization of exoplanet atmospheres points either to direct imaging or
the transit method. Although proposed coronagraph2 and interferometric3 concepts exist for directly detecting
and characterizing exoplanets (e.g. Terrestrial Planet Finder4, 5), a lack of technological maturity puts these
missions in the future.

The transit method therefore provides a second path to the discovery and characterization of Earth-like
exoplanets in the near term. A subset of exoplanets cross in front of their stars as seen from Earth (“primary
eclipse” or “transit”). When the planet transits the star as seen from Earth, the starlight gets dimmer by the
planet-to-star area ratio. If the size of the star is known, the planet size can be derived. The transit technique
also makes it possible to characterize atmospheric constituents of exoplanets. During the planet transit, some of
the starlight passes through the optically thin part of the planet atmosphere, picking up spectral features from
the planet. A planetary transmission spectrum can be obtained by dividing the spectrum of the star and planet
during transit by the spectrum of the star alone (i.e. before or after transit). In this way there is a potential to
study atmospheres of Earth analogs, provided the star is bright enough. Highlights of such observations of hot
giant exoplanets include the discovery of sodium in HD 209458b6 and water and methane in HD 189733.7, 8

The ExoplanetSat spacecraft will attempt to detect exoplanets using the transit method. Once a detection
occurs, the parent star will become a high-priory target for follow-on observations. Such a follow-up is only pos-
sible if the star is sufficiently bright, therefore ExoplanetSat will target the nearest and brightest (approximately
0 < V < 5) Sun-like stars in the sky. Because the brightest stars are too widely separated across the sky for a
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single telescope field of view to continuously monitor, ExoplanetSat will use a targeted search, as described in
Section 1.3. The ultimate goal is a fleet of many ExoplanetSats, each monitoring a different target star.

1.2 Prior work and related missions

CubeSats are a class of nanosatellites initially developed at Stanford University and California Polytechnic State
University, San Louis Obispo to facilitate low-cost access to space.9 This is primarily accomplished by the small
size of a single CubeSat unit (“U”), which measures 10 cm on a side and has a mass of 1.33 kg.10 CubeSats are
launched as piggyback secondary payloads on large launch vehicles using the Poly-Picosatellite Orbital Deployer
(P-POD)—a tube-like containment box attached to the launch vehicle that holds up to three 1U CubeSats
and releases them upon reaching orbit.11 ExoplanetSat is a triple-CubeSat measuring 10 cm × 10 cm × 34
cm. By adopting the standardized CubeSat form factor, ExoplanetSat is compatible with the (P-POD), which
affords many more launch opportunities at lower cost than would be possible with a larger or non-standardized
configuration. Furthermore, the CubeSat specification means greater compatibility with a range of commercial
off-the-shelf (COTS) components.

Imaging satellites based on the CubeSat bus have been implemented for Earth-observing missions. The
Miniature Imaging Spacecraft (MISC) developed by Pumpkin, Inc. is a 3U space telescope designed to provide
low-cost multispectral imagery from a 540 km circular orbit.12 While the application is different from that of
ExoplanetSat, the baseline spacecraft configuration—a three-axis stabilized, 3U CubeSat with an optical payload
and deployable solar arrays—is similar. Recently, the United States government has sought to use CubeSats as
low-cost platforms for advanced technology development, including hyperspectral sensors.13

There are several space telescope missions relevant to the search for exoplanets. Launched in 2006, the
Convection, Rotation and planetary Transits (CoRoT) spacecraft is a small space telescope with a roughly 0.3
m diameter primary mirror.14 CoRoT is a mission of the French space agency (CNES) designed to conduct
astroseismoloy measurements and detect transiting exoplanets by observing approximately 12,000 target stars
simultaneously during 5 month periods. The mission aims to achieve a photometric precision of 7 × 10−4 for
V = 15.5 mag stars over a one-hour integration15 and has detected fourteen exoplanets thus far.16

The Microvariability and Oscillations of Stars (MOST) mission is another high photometric-precision space
telescope for astroseismology and exoplanet transit observations.17, 18 The MOST spacecraft is especially relevant
to ExoplanetSat given its low volume (65 cm × 65 cm × 30 cm) and low mass (54 kg). MOST uses unique
optical setup wherein light from the target star is deliberately positioned on a field stop. This places an image
of the telescope entrance pupil on the science CCD, minimizing the impact of pixel-to-pixel response variations
and subpixel variations.

Finally, NASA’s Kepler spacecraft—launched in March 2009—is arguably the flagship exoplanet mission cur-
rently in operation. Residing in an Earth-trailing heliocentric orbit, Kepler uses a highly precise CCD photometer
to monitor transiting terrestrial planets around a field of roughly 150,000 main sequence stars.19 The goal of this
mission is to provide a census of Earths, i.e. to measure the frequency of Earth-sized planets in Earth-like orbits
around Sun-like stars. In order to accomplish this, Kepler uses a large field of view to observe many faint stars.
However because the stars are so faint, transit atmosphere measurements for small planets will not be possible.

1.3 Concept of operations

Each ExoplanetSat spacecraft will monitor a single bright star, therefore monitoring a variety of candidates will
require a collection of identical spacecraft in orbit simultaneously. From a low-inclination low Earth orbit (LEO)
at approximately 650 km altitude, each ExoplanetSat will observe its target star when visible during orbital
night. Observation during orbital day is precluded due to thermal, power, and lighting constraints. An Earth-
twin transit across the center of a star would last 13 hours, thus the observing cadence from low-inclination LEO
(i.e. roughly 30 minutes of orbital night followed by roughly 60 minutes of orbital day) is sufficient to detect
such an event. During orbital dawn, the spacecraft will reorient itself to point the solar panels toward the Sun.
Likewise, during orbital dusk the spacecraft will slew to re-acquire the target star.
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1.4 Photometry requirements and noise

The requirement on photometric precision needed to detect an Earth analog drives the design of ExoplanetSat.
The depth of a transit, i.e. the amount by which the target star brightness decreases during an exoplanet
primary eclipse, is determined by the planet-to-star area ratio. An Earth-sized planet transiting a Sun-sized star
has a transit depth of 8.4× 10−5. Therefore the ExoplanetSat payload must be able to detect a roughly 1 part
in 10,000—or 100 part per million (ppm)—reduction in stellar brightness. To ensure confidence in a potential
detection, we require a 7σ limit on the system noise. Therefore total error in the photometric signal σtot must
be less than (100 ppm)/7 = 14.3 ppm. For margin, the requirement on total photometric noise is set at 10 ppm.
For the purposes of this work, this is considered to be over an individual observation lasting on the order of
hundreds of seconds. We actually require this precision over an entire transit (approximately 13 hours for an
Earth/Sun pair), which will contain many separate observations, therefore the above requirement is conservative.

For the purposes of this study, the total photometric noise is decomposed into noise from the CCD detector,
σCCD and noise on the signal due to high frequency spacecraft motion (i.e. “jitter”), σjitter. Because these two
noise sources are independent and random, they combine in quadrature in the usual fashion:

σtot =
√
σ2
CCD + σ2

jitter ≤ 10 ppm. (1)

Detector and jitter noise are discussed in Sections 3.1 and 3.2 along with related simulation results and analysis.

2. BUS OVERVIEW

The core bus subsystems—power, avionics, communications, structure, thermal, and attitude determination
and control (ADCS)—have been baselined to differing levels of detail. Where possible, we seek to use COTS
components developed for the CubeSat community. Figure 2 shows the baseline configuration of the ExoplanetSat
spacecraft.

2.1 Power

Power will nominally be supplied by a set deployable solar arrays. The current baseline arrangement is the
“cross” configuration shown in Figure 3a. Here four 10 cm × 30 cm deployed panels face the direction opposite
the lens. There is also a single 10 cm × 10 cm panel at the center of the cross. Nominal power production from
the cross configuration is 31 W. An alternative arrangement is the “table” configuration shown in Figure 3b.
Here five 10 cm × 30 cm panels (four deployed, one body-mounted) form a surface that generates 36.5 W. The
table configuration is advantageous because it offers additional power margin and the geometry of the panels
with respect to the optics prevents the lens from viewing the Earth during orbital daylight, which can heat the
detector. Also, the spacecraft must reorient itself during each orbital dawn and dusk, and the table configuration
results in smaller slew maneuvers. However, the table deployment mechanism is under development while the
cross-style hinges are available, thus the cross is the baseline configuration. The average power required during
orbital night is approximately 17.6 W, which accounts for operating the attitude control subsystem (reaction
wheels, piezo stage, torque coils), science detector, avionics, and communications. Note that this power is drawn
from the batteries, given that the solar panels are not illuminated. The average power required from the solar
panels during orbital day is 28.5 W, which accounts for the attitude control subsystem, avionics, communications,
and battery charging.

In both configurations the arrays are COTS components produced by Clyde Space (panels and cells) and
Pumpkin, Inc. (spring-loaded hinges). The arrays will lie flat against the spacecraft while in the P-POD and
passively spring open upon release from the carrier. During orbital daylight, the spacecraft will be oriented so
that the deployed solar cells directly face the Sun, maximizing the charging rate. In addition to the deployed
solar panels, the spacecraft will have a set of body-mounted 10 cm × 30 cm solar panels. The purpose of these
body-mounted cells is to provide power during spacecraft de-tumbling after deployment or in the event of a loss
of attitude control. Power will be regulated by an Electrical Power Subsystem (EPS) board from Clyde Space
and stored by a bank of 8 lithium-cobalt cells.
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Figure 2. Baseline ExoplanetSat configuration. Not shown are the solar arrays, batteries, the light seal between the lens
mount and focal plane array, and the CCD cooling strap.

(a) (b)

Figure 3. Possible deployable solar array configurations: (a) “cross” configuration (solar cells on the deployed panels are
facing away) and (b) “table” configuration. In both cases body-mounted panels are used for tumbling scenarios.

2.2 Avionics

The avionics subsystem will be responsible for running the attitude control loop, which requires rapidly reading
images from the focal plane array, performing a star tracking algorithm, performing estimation via a Kalman
filter, and commanding the various actuators (see Section 2.5 below). The image processing task is a main driver
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of avionics architecture. The initial design calls for a FPGA to read and process image data at a high rate. A
PIC32 microcontroller will augment the FPGA and provides computing for the attitude control loop, along with
communications handling and housekeeping functions. ExoplanetSat will use flash memory to store science and
telemetry data for later transmission to the ground, and SDRAM for temporary storage of image data being
processed by the FPGA.

2.3 Communications

The communications subsystem will use a single S-band modem, an 8 dBi patch antenna, and a 3 dBi whip
antenna. The baseline transmitter/reciever is the Microhard n2420 2.4 GHz spread spectrum wireless modem,
which offers the necessary functionality in a compact package (32 mm × 51 mm × 6.35 mm, 19 g). The patch
antenna is used to support a high rate channel for transmitting science data to the ground. The lower gain
antenna is used during the commissioning phase when precise pointing has yet to be established, or during
contingencies in which attitude control is lost. ExoplanetSat will use the existing ground stations developed by
MIT and international partners for the High Energy Transient Explorer (HETE-II) mission.20 These are located
along a roughly equatorial ground track in Kwajalein (Micronesia), Singapore, and Cayenne (French Guiana).

2.4 Structure and thermal

ExoplanetSat will use a modified COTS structure that consists of a 2U skeletonized aluminum cage. The
electronics boards are mounted to rails that run down the interior of the cage, while custom-designed mounts
affix the piezo stage (described below). A COTS mount holds the lens a fixed distance from the focal plane.
Solar panels are mounted to the exterior of the structure. Thermal control is entirely passive, given the power,
volume, and mass constraints. The most thermally-critical component is the science CCD detector, which must
remain cool in order to minimize dark current noise. Thermal control strategies for the CCD are currently under
review, however the most promising solution is the use of a thermally conductive cooling strap run between the
CCD and the cavity around the lens. This space-facing cavity would then act as a radiator to passively cool the
detector.

2.5 Attitude determination and control

In order to meet ExoplanetSat’s stringent photometry requirement, the target star image must be stationary on
the focal plane array. As discussed in Section 3.2 below, any significant motion of the star image will result in
a change in the signal due to pixel gain non-uniformity, resulting in additional noise. The spacecraft pointing
must therefore be controlled to a high degree of precision. To accomplish this, ExoplanetSat uses a two-stage
pointing control scheme wherein reaction wheels serve as a coarse stage—controlling the spacecraft attitude to
approximately 60 arcseconds (3σ) in all three axes. Residual pointing errors down to the arcsecond level are
removed by a two-axis piezoelectric nanopositioning stage, on which the focal plane is mounted. The piezoelectric
stage translates in the plane of the detector in order to keep the target star located on the same set of pixels. The
baseline reaction wheel unit is the MAI-200, which also includes three-axis magnetic torque coils for desaturation.
Centroid tracking on the focal plane and rate information from gyros will be the primary sensor outputs. See
Pong et al.21 for an in-depth discussion and analysis of the ExoplanetSat attitude determination and control
subsystem.

3. OPTICAL PAYLOAD

The ExoplanetSat optical payload consists of a commercially available single lens reflex (SLR) camera lens and
a composite focal plane array made up of a single CCD detector surrounded by tiled CMOS detector chips (see
Figure 4).

The lens selection process took into account several competing design parameters. Photon collection capability
is a primary consideration given the photometric nature of the mission, hence large aperture (i.e. low f-number)
lenses were given priority. Because the aperture diameter increases with focal length for a constant f-number,
longer focal length lenses were also prioritized. Volume limitations were also a concern, with the outer diameter
of the lens being no larger than 9 cm in order to maintain volume margin in the 10 cm CubeSat envelope. For
this same reason, only 35 mm format lenses were considered. Medium format lenses have a larger light spot and
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62 mm 46.5 mm

Focal
plane
array

Piezoelectric stageLens Mount

77 mm

(a) (b)

Figure 4. (a) Layout of the optical payload. Note that the lens flange is one flange focal distance (FFD, 46.5 mm) away
from the focal plane array, which is mounted to the piezoelectric stage. For clarity, the light seal between the lens mount
and focal plane array has been removed. (b) Layout of the CCD science detector (center) and CMOS guide detectors on
the focal plane. The blue circle is the extent of the lens light spot. White shows the detector area while gray shows the
surrounding electronics.

therefore provide additional focal plane area and reduced vignetting. However, the flange focal distance (FFD,
the distance from lens mount to image plane) on medium format lenses is much larger than for 35 mm format
lenses, making the entire lens assembly prohibitively large. For example, a Nikon F-mount lens has a 46.5 mm
FFD, while for a Hasselblad medium format lens the FFD is 74.9 mm. See Table 1 for a comparison of candidate
lenses.

Table 1. Lenses considered for the ExoplanetSat mission, listed by light throughput (i.e. aperture area). Values are taken
from manufacturers’ data sheets. Lens 1 is the current baseline.

ID Maker Lens f f/# Area* Length† FFD‡ Dia§ Mass Cost¶

[mm] [mm2] [mm] [mm] [mm] [g] [$K]

1 Zeiss Planar T 1.4/85 85 1.4 2895 62 46.5 77 570 1
2 Leica Noctilux-M 50 mm f/0.95 52.3 0.95 2380 75 27.8 73 700 10
3 Leica Apo-Summicron 90 mm f/2 90 2.0 1622 78 27.8 64 500 3.5
4 Zeiss Sonnar T 2/85 85 2.0 1419 82 27.8 65 450 2.9
5 Zeiss Planar T 1.4/50 50 1.4 1002 45 46.5 66 330 0.55

∗Aperture area, given the effective aperture diameter computed from the focal length and f-number.
†Physical lens length.
‡Flange focal distance (i.e. distance from lens mount to image plane).
§Maximum outer lens diameter.
¶Off-the-shelf-cost (does not include modifications to flight qualify).

With these consideration in mind, the baseline choice is a Zeiss Planar T f/1.4, 85 mm F-mount lens. It offers
superior optical throughput (as given by the aperture area), with only moderate volume, mass, and cost. The
lens will be undergo modifications to make it space-worthy, including fixing the focus at infinity and aperture at
f/1.4, removing volatile greases and cements, and venting of air spaces. The selected lens has the advantage of
having previously undergone these modifications for another space application.22
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multiple CMOS detectors. The CCD performs the photometry function, conducting relatively long integrations
(up to 10 seconds) to collect as many photons as possible from the target star. The CMOS senors are used to
track the centroids of surrounding guide stars at a much faster update rate, serving as a star tracker for attitude
determination. Final component selection is ongoing, however in general the CCD will be a back-illuminated 1K
× 1K array of approximately 15 μm pixels with a well capacity on the order of 100K electrons. We are currently
evaluating a back-illuminated 2.6K × 1.9K CMOS sensor with 1.4 μm pixels to serve as the guide detector.

3.1 CCD detector noise

Recalling the noise equation (1), we separate the CCD noise σCCD into the three dominant components: photon
(shot) noise, dark current noise, and read noise,

σ2
CCD = σ2

shot + σ2
dark + σ2

read. (2)

The arrival of signal photons on the detector is governed by Poisson statistics, hence the shot noise is simply,

σ2
shot = S · tint [photons] (3)

where S [photons/s] is the star signal and tint [s] is the integration time for that particular frame. The dark
current noise is also a Poisson process, so the statistics are the same:

σ2
dark = D · tint [photons] (4)

where D [photons/s] is the dark current signal. Finally, read noise is typically given in terms of RMS electrons
per read, therefore the read noise for the entire frame is,

σ2
read = N ·R2 [e-] (5)

where R [e- RMS/pixel] is the read noise value and N is the number of pixels being read.

Given these noise sources, one can express the CCD noise in ppm as the inverse of the signal-to-noise ratio
(SNR):

σCCD =

√
F · σCCD [photons]

F · S · tint [photons] · 106 [ppm]

where F is the number of frames co-added over the course of a single observation point. From equations (2)
through (5) the numerator can be expanded give an expression for CCD noise in ppm as a function of the
parameters tint, D, F , and R,

σCCD =

√
Stint +Dtint +NR2

√
F · S · tint

· 106 [ppm] (6)

Figure 5 shows CCD noise as a function of integration time for stars of varying brightness (MV = 0, 4, 7) and
different amounts of co-adding. We assume a 100 × 100 pixel postage-stamp around the target star and an
aperture diameter of 60.7 mm (lens 1 in Table 1). The dark current is 12.5 [e-/pixel/s] and the read noise is 2 [e-
RMS]. The longest observation shown is 17 minutes (100 co-added frames at 10 s each), which accords with the
available observing time during orbital night in LEO. The photometry requirement is reachable for 0 magnitude
stars, however it is more difficult at 4th magnitude. Still, Figure 5b shows that by lengthening the integration
time slightly and increasing F , it will be possible to reduce CCD noise further, likely to a level below the 10 ppm
threshold.

As shown in Figure 4(b), the focal plane array consists of a single science frame-transfer CCD surrounded by
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Figure 5. CCD noise as a function of integration time and number of co-added frames for (a) 0th magnitude and (b) 4th

magnitude target stars. The integration time per frame is given by tint while the number of frames per exposure is F .

3.2 Jitter noise

In addition to the CCD noises described above, the photometric signal will be corrupted by jitter noise, which
arises due to the combination of pixel response non-uniformity (PRNU) and spacecraft pointing error. This is
shown schematically in Figure 6, which depicts a defocused light spot falling on detector pixels with varying
response. As the spot translates due to spacecraft jitter, a new set of pixels is covered, which—due to response
variations—changes the photometric signal when the pixels are summed.

(a) (b) (c)

Figure 6. Schematic representation of jitter noise due to photo response non-uniformity (PRNU) and spot motion: (a)
Light spot falling on pixels with gain non-uniformity, (b) shift of the light spot (due to spacecraft motion) results in new
pixels being illuminated and a different signal, (c) additional motion illuminates yet different pixels.

PRNU can be decomposed into two components. One is pixel-to-pixel (i.e. interpixel) variation caused by
changes in average quantum efficiency from one pixel to the next, and small variations in pixel size.23 The second
is intrapixel variation caused by changes in quantum efficiency on scales smaller than a single pixel.24 PRNU
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is typically addressed by flat-fielding the CCD, however ExoplanetSat lacks space for an internal flat-fielding
source. In addition, flat-fielding cannot account for intrapixel variation. We expect jitter noise to be the limiting
noise source. I.e. even in photon-noise dominated situations while observing bright stars over long integrations,
jitter noise will still impose an upper bound on the achievable signal-to-noise ratio.

3.2.1 Simulation

In order to analyze the effect of jitter noise and derive a requirement for spacecraft pointing, we have created
a physics-based simulation. Similar to numerical models developed for the MOST17 and Kepler25 missions, the
ExoplanetSat simulation is used to conduct design trades and in the present case provides initial insights into
feasibility. The simulation models diffraction using the standard Fourier transform relationship between the
optical system pupil function and the incoherent point spread function (PSF). I.e.

hI(x
′, y′) = |h(x′, y′)|2 (7)

where hI(x
′, y′) and h(x′, y′) are the incoherent and coherent PSF, respectively. The later is given in the

Fraunhofer limit by Fourier transforming the pupil mask and scaling to image coordinates (x′, y′):

h(x′, y′) ∝ Gpupil

(
x′

λf
,
y′

λf

)

= Gpupil(u, v)|( x′
λf , y′

λf

) (8)

where f is the focal length of the optical system, λ is the wavelength of light, and (u, v) are frequency components.
Note that the the frequency components are related to the physical dimensions of the pupil via the Nyquist
sampling relationships,

Δx

δx
=

2Δu

δu
≡ Nx

Δy

δy
=

2Δv

δv
≡ Ny

where Δx,Δy is the size of the pupil field, δx, δy is the pupil sample size, 2Δu, 2Δv is the frequency bandwidth
and δu, δv is the frequency resolution in the horizontal and vertical directions, respectively.

Returning to the PSF, the Fourier transform of the pupil function (3) can be written more explicitly as,

Gpupil(u, v) = F [gpupil(x, y)] (9)

where,
gpupil(x, y) = Apupil(x, y) exp{iφpupil(x, y)} (10)

is the complex pupil mask broken down into a spatially-dependent amplitude and phase functions A(x, y) and
φ(x, y). A top hat function of a size equal to the lens aperture is used as the amplitude function. The phase
function is a combination of three terms: x-tilt, y-tilt, and defocus. The tilts are caused by errors in spacecraft
pointing while the defocus is deliberately introduced in order to spread the incoming light over multiple pixels.
Therefore the phase at the pupil is,

φ(x, y) =
2π

λ

[
1

2
δz

x2 + y2

f2
+ (4.848137× 10−6)θxx+ (4.848137× 10−6)θyy

]
[rad] (11)

where δz is the amount by which the focal plane is moved out of focus, θx and θy are the x and y spacecraft
pointing errors in arcseconds, f is the focal length, and λ is the observing wavelength. Equations (7) through
(11) thus provide a means of generating a simulated image of the target star. After generating a PSF, the image
is then re-sampled onto a detector with given quantization and noise characteristics (see Figure 7). For the
purposes of this work, a PRNU of 1% is assumed and only interpixel variation is taken into account. Intrapixel
variation will be considered in the future.

Jitter noise is a function of several system parameters, including the amplitude of jitter from the spacecraft
reaction wheels and target star magnitude. Simulation is used to explore the effect of these parameters on
meeting the 10 ppm science requirement. In order to isolate the effect of jitter, the CCD noise sources (read,
photon, and dark current noise) are disabled. Simulation parameters are given in Table 2 and parameter-specific
results are presented in the following sections. Note that the total observation time tobs is fixed at 100 seconds.
During each observation, there are a number of shorter integrations of length tint that are co-added.
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(c) PSF as sampled by detector
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Figure 7. Sample simulation outputs for perfectly focused system (a-c) and defocused system (d-f). In these samples
400 nm < λ < 900 nm and defocus is added via a quadratic phase term at the pupil (d).

Table 2. Simulation parameters.

Parameter Symbol Value Units Notes

Focal length f 85 mm
f-number f/# 1.4 -
Aperture diameter D 60.7 mm From focal length and f-number
Wavelength λ 650 nm Center of 400 - 900 nm bandpass
Pixel size 15 μm
PRNU 1% - 1σ
Quantization 16 bits
Well capacity 100,000 e-
Integration time tint 0.5 s
Spot diameter Dspot 35 pixels
Observation time tobs 100 s
Jitter amplitude δθx,δθy {0.1, 1, 10} arcseconds 3σ
Target star V magnitude MV 0 - 7 -

3.2.2 Results

The model discussed above was used to conduct Monte Carlo simulations of imaging in the presence of random
pointing offsets due to reaction wheel jitter. These offsets have 3σ values δθx and δθy that are deliberately

Proc. of SPIE Vol. 7731  773127-11

Downloaded from SPIE Digital Library on 11 Feb 2011 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



varied to determine the effect of jitter on the photometric signal. Only interpixel PRNU was considered in this
initial analysis; each pixel is assumed to have uniform quantum efficiency for the sake of computational efficiency.
Figure 8(a) shows the simulated jitter motion of spot centroids superimposed on the scale of the focal plane.
Figure 8(b) shows jitter noise as a function of stellar magnitude and pointing error.
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Figure 8. (a) Centroid motion on the focal plane due to spacecraft jitter with 1σ and 3σ circles drawn (note the relative
size of the 15 μm pixels. (b) Jitter noise as a function of target star brightness MV and 3σ jitter amplitude δθ.

Figure 8(b) shows the expected trend wherein jitter noise increases for decreasing brightness. This is due to
the fact that jitter noise is normalized by the signal when expressed in parts per million—brighter stars have
lower relative noise. The lack of smoothness in the curves is due to the particular shape of the PSF used in
the simulation. For computational efficiency, a monochromatic airy pattern was used in place of a broadband
version. The internal structure present in the monochromatic PSF contributes to the peaks and troughs in the
graph. The trend and noise values, however, remain valid. Figure 8(b) also shows that jitter noise increases
for larger jitter amplitudes, which is expected as well. All points lie below the noise requirement except for the
10 arcsecond, 7th magnitude case. Given the constraints imposed by CCD noise (Figure 5), these jitter noise
results show that pointing accuracies on the order of single arcseconds will be required by the attitude control
subsystem to maintain the overall error budget (1) down to 4th magnitude.

3.2.3 Future jitter noise studies

This simulation currently takes into account only a subset of parameters that influence jitter noise. For example,
it is suspected that spot size has an effect by changing the proportion of pixels at the edge of the spot in relation
to the center (the edge pixels contribute to the changing signal which causes jitter noise). Likewise, the present
simulation does not account for intrapixel variation, which has a potentially large contribution to jitter noise. In
the absence of this within-pixel variation, the jitter noise seen in the above analysis is due primarily to the spot
illuminating a different fraction of the pixels on the spot edge. When the spot moves, a new fraction of each
edge pixel is illuminated, which causes signal variation (jitter noise) even with uniform intrapixel response.

4. CONCLUSION

This work presents an initial concept and baseline design for ExoplanetSat—a 3U CubeSat space telescope de-
signed to monitor the brightest Sun-like stars for transiting Earth analogs. By adopting the CubeSat form factor,
we aim to take advantage of low-cost piggyback launch opportunities and leverage existing COTS technologies.
We present key subsystems, including a two-stage scheme for arcsecond-level pointing. The optical subsystem
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uses a refractive SLR camera lens and composite focal plane for both science measurements and guide star
tracking. An initial analysis of detector and jitter noise shows that the 10 ppm noise threshold—the minimum
required for detecting Earth-like exoplanets—is achievable given sufficiently low dark current noise, high photon
flux, and highly precise pointing at the 0.1 to 1 arcsecond level. While we have shown that the pointing require-
ment is within reach, these goals are extremely difficult to reach within the constraints of a CubeSat and will be
developed further in future publications. The transit method is directly scalable to other planet-star area ratios
for a given system noise level. Therefore if mass and volume constraints prove the 10 ppm requirement to be
infeasible, the science requirement may be adjusted to focus on larger exoplanets.

4.1 Future work

A key element of any future work is expansion and maturation of the imaging simulation. The ultimate goal is
to create an end-to-end numerical model that can be used to simulate transit events in the presence of all antic-
ipated noise sources. Central to this modeling effort will be benchmarking the simulation against experimental
measurements. We anticipate doing this using a jitter noise testbed currently under construction at MIT. It will
provide a way to inject a known amount of jitter-induced focal plane motion and measure the resulting signal
error.

An item that will receive particular attention is the issue of stray light from the Earth and Moon entering
the telescope during science operations. Volume constraints prevent the use of a large baffle, therefore a detailed
analysis must be undertaken to characterize the detrimental impact stray light will have on the ability to meet
science requirements. This and other efforts will continue over the coming months to mature the ExoplanetSat
design and develop a functional prototype.
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