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ABSTRACT

The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for
increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars
impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky.
One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and
thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints,
considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can
improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to
an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a
targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit
and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.
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1. INTRODUCTION

Transiting exoplanets around the brightest stars in the sky
will be a major provider of science in the coming years. As
the focus of the field moves toward the characterization of
transiting planets, exoplanets orbiting bright stars will provide
the best opportunities for precise follow-up observations. This
is particularly true for any Earth-analogs discovered around
the brightest Sun-like stars. The Kepler mission is surveying
relatively dim stars (V = 9 to V = 16) for Earth-analogs, but
these will be difficult to observe from the ground. Detecting a
transiting Earth-analog around a bright (V < 7) Sun-like star
would enable a multitude of observations, from the ground and
space, that would otherwise not be possible. Transiting planets
around the brightest Sun-like stars is therefore of prime scientific
interest.

The brightest Sun-like stars have, nevertheless, yet to be
comprehensively surveyed for transiting planets, Earth-analogs
or otherwise. The reason is that they are spread out over the
entire sky, which makes a practical survey of these stars very
difficult. Since they are so widely distributed, any survey of the
brightest Sun-like stars would have to be a targeted survey that
examined one star at a time. Such a survey would be similar
in concept to the MEarth survey of M-dwarfs (Nutzman &
Charbonneau 2008), the N2K radial velocity survey (Fischer
et al. 2005), or the TERMS targeted transit survey (Kane et al.
2009). Unfortunately, given the hundreds of stars that would
need to be surveyed, the average transits probabilities, and
the typical window functions for long period Earth-analogs, a
targeted survey searching for long period transiting exoplanets
would require either hundreds of telescopes or hundreds of years
of observing time.

In the course of considering a new space-based transit search
for Earth-analogs, this problem motivated us to consider ways
in which a targeted survey of the brightest stars could be
feasibly executed. One solution is to determine the inclination
of the rotation axes of the target stars. From angular momentum
considerations, we would expect any orbiting planets to lie close
to the stellar equator. By only targeting those stars with stellar
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inclinations near 90° to our line of sight, the number of stars
that need to be surveyed could be lowered dramatically.

We have therefore calculated the effect of stellar inclination
constraints on transit probabilities. We account for a range
of possible planetary system inclinations with respect to the
stellar equator and apply these probabilities to an ensemble
of stars. We also examine the number of stars that need
to be observed to reach various statistical confidence levels
of detection. For reasonable assumptions, this allows for a
85% reduction in the number of stars that would need to
be observed in a targeted survey. Furthermore, we consider
the case of multiplanet systems where only one planet has a
detected transit, and derive the transit probability of the second
planet for various spreads of the mutual inclination angle.
We conclude by discussing ways in which to measure stellar
inclinations, followed by the outline of a potential space-based
survey.

2. TRANSIT PROBABILITIES
2.1. Background

We begin by reviewing the transit probability for a single
star under the assumption that the planet’s orbital inclination is
randomly and evenly distributed over all possible orientations.
We will assume for now that the planetary orbit is coplanar
with the stellar equator. In this case, the transit probability
for planets in circular orbits is R,/a (Borucki & Summers
1984), the ratio of the stellar radius to the semimajor axis of
the planetary orbit. The a priori transit probability of R, /a may
be derived by considering the angular momentum vector of a
planetary orbit in particular orbital orientation, the complete set
of which describes a sphere in space. The probability of seeing
any particular set of orientations is the fractional area on the
sphere that encompasses that set’s angular momentum vectors.
Again, if we assume for the moment that the planetary orbit is
coplanar with the stellar equator, the orbital inclination i is the
same as the stellar inclination v (Figure 1). The probability of
a star having a particular value for its stellar inclination then
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Figure 1. Diagram of the relevant angles. ¥ is the angle that the stellar equator
makes with the plane of the sky, X is the angle the planetary orbit makes with
the stellar equator, and i is the observed orbital inclination of the planetary orbit
from Earth.

follows the distribution

Se(¥) = siny. (D

Transits will occur if the planetary orbit has an inclination
between (90° — 0) < i < (90° + ), where the angle 6 is

equal to
. Ry
6 = arcsin (—) , 2)
a

and is the maximum orbital inclination for which a planet will
show a transit. Note that we have assumed the planet radius to
be much smaller than the stellar radius.

The transit probability for randomly distributed circular orbits
is the fraction of orbits that lie within this orbital inclination
range, and is given by

90°+6
o0r—p SNV dYr

floso sinyr dr

which is the result quoted earlier. Note that in these and the
following calculations, we will continue to assume that the
radius of the planet is much smaller than the radius of the star.

R,
Py = =cos(90° — ) = —,  (3)
a

2.2. Transit Probabilities with Stellar Inclination Constraints

When there is information about the orientation of the
planetary system through measurement or indirect assumptions,
the transit probability can be calculated by treating the above
distribution for i as a Bayesian prior (Bayes 1763; Cox
1946). This allows us efficiently to slot in stellar inclination
measurements to our knowledge of a system’s orientation.
Indeed, the calculation of transit probabilities is almost a perfect
subject for Bayesian techniques, since we have a rigorously
defined prior distribution—a luxury that many problems do not
have.

Assuming that the planetary orbit is coplanar to the stellar
equator, the probability distribution arising from a measured
stellar inclination angle, ¥,,, can be treated as a conditional
distribution. The resulting posterior distribution will be

sin g f (Y |V)

Fo |t =
v SIS Sin f (Y ) d Y

“
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The transit probability will be the integral of the posterior
distribution over the range of transiting stellar inclinations,

90°+0
Py = / AV Z (5)
90°—0

As an example, take a Gaussian measurement of the form
Y, £ o. This implies a conditional distribution of

_ _ 2
W —Ym) } ’ ©)

1
fGauss(l,[/mhp) = W 24 |: 202

and a posterior of

sin ¥ (Y —Ym)?
Vamo? XP [ 2%° ]
180° _siny —( —w)? '
Jo" s exp [ | dy

If we have made an inclination measurement of ¥, = 90° £ 5°
with Gaussian uncertainties, then for an Earth-like planet with
R./a = 1/215 the transit probability will be 4.25%. This is
9 times greater than the transit probability before the inclination
measurement was made (0.47%). For hot Jupiters with R, /a =
1/10, the transit probability is enhanced to 74.8% from 10%.

Alternatively, consider a box-like, uniform, distribution of
the measured angle. This could occur if we had a “binary”
measurement that only revealed if the stellar inclination was
above or below a certain angle. In this case, the conditional
distribution from the measurement of ,, is the combination of
two Heaviside step functions,

fGauss(W“hm) =

@)

1
Joox(Um V) = Z(H[w"'(_l/fm +0) H[=Y +(Ym+0)]). (8)
The posterior will be

fbox(whﬂm)
_ BLHWY + (<Y + 0)] HI—Y + (Y +0)])

R wm+a)]H[ Y+ W+ o)) dy
)

For a similar measurement of v, = 90° &+ 5°, the transit
probability for an Earth-like planet at R,/a = 1/215 is 5.3%,
an increase of a factor of 11.4 over the transit probability before
making the measurement. Hot Jupiters, on the other hand, are
close enough to the star that they will always transit across a
star with a measured stellar inclination of v, = 90° & 5°.

2.3. Transit Probabilities for a Range of Planetary System
Inclinations

We now consider the added complexity of inclination in the
planetary system itself. In the preceding discussion, we assumed
that any orbiting planets are coplanar with the stellar equator.
From the solar system, we know that this is not necessarily the
case. The ecliptic is inclined by 72155 to the Sun’s equator, and
the rest of the solar system’s planets are scattered within several
degrees of the ecliptic. We will define the inclination of the
planetary system to the stellar equator—or any other reference
plane—as the variable A. The angle the stellar equator makes
with the plane of the sky we denote as the stellar inclination
¥, and we will to refer to the observed angle the planetary
orbit makes with the plane of the sky as the orbital inclination i
(Figure 1).
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Factoring in the planetary inclination of the exoplanetary
system, the orbital inclination (i.e., as seen from Earth) will
be i = Y — A, and its distribution will be governed by the
joint distribution of ¥ and XA. Since ¥ and A are independent
variables, their joint distribution is simply the product of their
individual distributions: f; = fg - fa, where f; is the joint
distribution, fy is the stellar inclination distribution, and f, is
the planetary inclination distribution. We will substitute  — i
for X in the distribution f, to help the calculations. Making the
substitution, the distribution of the angle i is then

i) = / Fe Ul A — D (10)

The function f;(7) is called the marginal probability distribution
for the orbital inclination. To calculate the transit probability of
a system, f;(i) becomes the integrand in Equation (5):

90°+) L oy .
_ Joo—s J1() di

tr — 180°

LY iy di

Here P is the probability that a single star will show a transit,
assuming that there is a planet in orbit. Equations (10) and (11)
may also be used on multiple planet systems: if one planet
is observed to transit the parent star, its orbital inclination
may be used as a reference plane in place of the stellar
inclination v,,, and an assumed mutual inclination distribution
may be substituted for the planetary system inclination A. The
transit probability of a second planet in the system may then
be calculated. The single-star transit probability may also be
applied to an ensemble of stars with random stellar inclinations.

an

2.4. Eccentric Planetary Orbits

We have assumed up to this point that any potential planets
are on circular orbits. To calculate the transit probability for
eccentric planetary orbits, consider the opening angle 6 which
describes the maximum angular difference between our line
of sight and the observed orbital inclination, #, that allows a
planetary transit. In the case of a circular orbit, 6 is defined as
in Equation (2). In the more general case, 6 is

. R
6 = arcsin (—) , (12)
r

where r is the planet—star separation at the time of transit. For
an eccentric Keplerian orbit, this implies that

. (R.1+esinw
6 =arcsin| ———— ). (13)
a 1—é€2

Here e is the orbital eccentricity and w is the argument of
periastron. This has been noted previously by Barnes (2007)
and Burke (2008).

In the context of transit probabilities with stellar inclination
constraints, the effect of an eccentric planetary orbit will be to
change the integration limits in Equation (11). The exact effect
will depend upon the values of e and w, or more generally
upon the distribution of e and w in exoplanetary systems. In the
situations we are interested in, when there is no radial velocity
evidence for a planet, we expect the distribution for the argument
of periastron, w, to be evenly distributed. This implies that on
average any orbital eccentricity will act as a “boost factor” to
the angle 0 of 1/(1 — ¢?).
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Figure 2. Eccentricity effects on the transit probability for an Earth-analog, as
a function of the measured stellar inclination angle. Note that these are values
averaged over an assumed uniform distribution for the argument of periastron.
We have used a measurement uncertainty of 5° and planetary inclinations spread
uniformly within 7°5 of the stellar equator.

Figure 2 demonstrates how this boost factor affects the transit
probability of an Earth-analog, as a function of the measured
stellar inclination angle. We have averaged over an assumed
uniform distribution for the argument of periastron and used a
measurement uncertainty of 5°. The planets are also assumed
to have planetary inclinations evenly spread within 7°5 of the
stellar equator. At e = 0.3, the boost factor to 6 (and, to a
very near approximation, the transit probability) is 1.10. An
eccentricity of 0.5 gives a boost of 1.33.

Note that for hot Jupiters and Earth-analogs—the two cases
we treat subsequently—we expect the planets to be in nearly
circular orbits, withe < 0.1. Aneccentricity of e = 0.1 provides
aboost factor of 1.01 to the angle 6. Fifty out of the 57 transiting
hot Jupiters with measured eccentricities have e < 0.1, and
although the eccentricity distribution of Earth-analogs is poorly
constrained and outside the scope of this paper, we note that
Earth has an eccentricity of ¢ = 0.017. We therefore only
consider circular orbits in Section 3.2, when we calculate the
benefits stellar inclination constraints provide in transit searches
for hot Jupiters and Earth-analogs.

2.5. Transit Probabilities for an Ensemble of Stars

One of our goals is to determine the number of stars one must
survey to find a transiting planet, given a fixed uncertainty in the
measured stellar inclinations and an adopted range of planetary
inclinations. To do this, we first need to determine the size of
our initial target list, n;, for stellar inclination measurements.
This will set the probability Py, that there is the desired number
of transiting planets in the stars that we are considering. For
instance, if we measured the stellar inclination of just 10 stars
there would be a low probability that a transiting Earth-analog
is in our sample, but measuring the stellar inclination of several
thousand stars would make it near certain.

Second, we also want to calculate the fraction of the initial
target stars that will actually need to be observed photometri-
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cally for transits. This fraction will set the odds that we will
observe one of the transiting planets hidden within our origi-
nal set of stars, which we denote as Ps. Since we are truly
interested in only those stars with stellar inclinations near 90°,
the size of this fraction will depend directly on the precision
of the stellar inclination measurements. It will also be sensitive
to assumptions made about the distribution of X, the planetary
system inclination. Later, it will be useful to delineate the frac-
tion of the initial stars that we will observe photometrically by
the angle ¢. We then will observe all of the stars with measured
stellar inclinations within ¢ degrees of 90°.

We first turn to describing Py, the probability that there is the
desired number of transiting planets within our initial n target
stars. We will calculate Py using the binomial distribution.
Previous studies have instead used the expectation value to
determine the number of stars that one needs for a transit
detection: if hot Jupiters have a 10% transit probability, then a
survey will need to look at ten stars to statistically expect a single
detection. We use the binomial distribution to perform a similar
calculation. Unlike using the expectation value, the binomial
distribution allows us to explicitly place a probability that the
survey will detect the desired number of transiting planets. This
calculation will be based upon the a priori transit probability
denoted as P;o = R./a, since we are trying to determine
how many stars we need to start with in our initial sample
to yield enough transiting planets. We will denote the binomial
distribution for s successes in n independent trails, each with
success probability p, as the function

Bi(n, 5, p) = (’j) (P = p)y'. (14)

If we start with »; initial target stars, consider the probability
Pier,1 that there is exactly one transiting planet in the initial stars,
and that we detect it. This probability will be the product of the
odds P, that there is exactly one transiting planet in the n;
initial stars, and the odds that we will observe it photometrically,
Pops- Using the binomial distribution to calculate the chance that
there is exactly one transiting planet in our initial stars, we can
write

Paet,1 = Pou,1 Pobs = Bi(ni, 1, Pyo) Pobs- (15)

Now let us take the case of exactly three transiting planets
among our initial stars. What is the probability that we will detect
at least one of them? Again we may use the binomial distribution
to calculate the probability P, 3 that there are exactly three
transiting planets, but now we will also use a sum of the binomial
distribution to determine the probability that we observe at least
one of these planets. We take the sum because we will regard
observing one, two, or all three of the planets as successfully
fulfilling our criteria that we observe at least one planet. We
therefore add the probabilities for all three of these scenarios,

and
’§

Paer3 = Bi(ni, 3, P ) 231(3, k, Pobs). (16)
k=1

The general case, and the one that we are ultimately inter-
ested in, is the one wherein we wish to know the probability
that we will detect at least ny, transiting planets, but do not spec-
ify the exact number of transiting planets in our initial n; stars.
To calculate this overall probability we must sum the individual
probabilities that we will detect at least ny, planets given an exact
number of transiting planets in our #n; stars. This similar to how
we summed the probability of observation in Equation (16).
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In terms of our initial target stars, the probability of photo-
metrically observing one transiting planet, and the number of
transiting planets that we wish to detect, the probability that we
will detect at least that many planets is therefore

nj

J
Paes(i Povs: i) = Y | Bi(ni, ji, Puo) D Bi(j. k. Pons)

J=ny k=ny
a7
We are still left with the calculation of Py, the independent
probability that we will observe each of the transiting planets
within our initial n; stars. We will only photometrically observe
a fraction of the initial n; target stars for transits. These will be
the stars with measured inclinations within ¢ degrees of 90°, and
the size of the fraction will be determined by the desired level
of Pgys. A survey will only photometrically observe stars with
measured stellar inclinations between 90° — ¢ < v, < 90°+¢.
Now consider that within the total number of stars, n;, that
will have their stellar inclinations measured we expect that
the measured inclinations will be randomly distributed around
the sky, and so the distribution of v, will go as sin,. The
expected number of stars that will lie within ¢ degrees of 90°
will therefore be

90°+¢ .

900 SIN Y APy
Mobs = i 180 .

Jo ¥ sin Yo dp,

To find the number of stars, np that will need to be observed
for transits, we will need to calculate »; and ¢. Note that we are
considering the general case and therefore leave out survey-
specific considerations that should be included for a more
accurate yield estimate. For example, we will assume that every
star has a planet of the type we are looking for, whereas the true
frequency will depend upon the period or mass range that the
survey is most sensitive to. We also do not consider the effect
of non-central transits or variations in stellar-type, since these
will both be directly tied into the signal-to-noise and magnitude
limits of a given survey. For a more detailed discussion on how
these factors can affect the yields of transit surveys, see Beatty
& Gaudi (2008).

To calculate ¢, the range of measured stellar inclinations
that will be considered for transit observations, first consider
the transit probability as a function of the measured stellar
inclination of the target star. This will allow us to calculate
the probable distribution of the transiting planets as a function
of the measured stellar inclination, and thereby figure what
stellar inclination range will have to observed to recover a given
fraction of the transiting planets within our sample of n; stars.

Including the inclination of the planetary systems as per
Equation (10), the transit probability will be

) = n;sin¢. (18)

f90"+9 180°
90°—6 Jo°
Ptr(lpm) = 180° 180°

Jo S

where fGauss(¥ |¥) is the posterior distribution of the stellar in-
clination. We now multiply P, by the probability that measuring
a star yields a given stellar inclination angle, sin v,,,. Doing so
will give us the probability that measuring the stellar inclination
of a star yields a certain value, and that with a measured stellar
inclination ,, the star will then show a transiting planet,

fGauss(d/W/m)fA(l/f - l) dl/f di
fGauss(wlwm)fA(w - l) dlﬁ di '

P‘Fm(wm) = sin me Ptr(l//m)~ (20)
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Figure 3. Diagram of a notional multiplanet system displaying the angles
referenced in the text. The angles i, and i are the orbital inclinations of the
planets as observed from Earth. Ay is the mutual inclination angle between the
two orbits.

The distribution Py, is, physically, the expected number of
planets—normalized to unity—that we will expect to see tran-
siting stars with a given measured stellar inclination ,,.

The fraction of transits that we will recover is dependent
upon how much of this distribution is observed for transits. If
we observe all of the stars with measured stellar inclinations
within an angle ¢ of 90°, then

90 .
o0 SNV Pu(Y) AV

1% sin g, Poe(Y) dim

For a given value of P,,s, we may solve for the angle ¢ that
defines the outer limit of the subsample observed for transits.

We can therefore calculate n; and ¢ for a given survey by
specifying the desired number of transiting planet detections,
and the desired values of Py,s. This allows us to determine 74y,
the number of planets that will have to be observed for transits,
as well as the probability that we will detect the desired number
of transiting planets,

Pops = (21)

nj

J
Paa(ni, Pops, ) = | BiCni, j, Pieo) D Bi(j, k, Pobs)

J=ny k=ny

(22)

3. RESULTS
3.1. Probability for a Second Planet to Transit

One direct application of our probability calculations is in
determining the transit probability of a second planet in a system
in which one planet is already observed to transit the parent
star. From angular momentum considerations, we have been
using the stellar equatorial plane as the reference plane for
our assumed distributions for the inclination of the planetary
systems, fa(X). In the case of a multiple planet system, we
may instead use the plane of the transiting planet’s orbit as the
reference. Consider the planetary system shown in Figure 3.
We may measure the orbital inclination iy ,, of the transiting
inner planet through the transit photometry. Assuming Gaussian
uncertainties, this will give us a distribution f7, (ip|ip.m) for the
orbital inclination of the inner planet. The outer planet will be
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Figure 4. Transit probability of HAT-P-13c, as a function of the maximum
mutual inclination of the two planets (Apc max). This assumes that the orbit of

PRt

planet “c” is evenly distributed within Apc max degrees of planet b’s orbit. For
reference, the a priori transit probability of R, /r. is also plotted.

inclined at some angle Ay to the inner planet and will have an
orbital inclination with respect to the sky of i. = iy, + Ay.. The
mutual inclination of the two planets A, will in turn be drawn
from the distribution fy, (Apc)-

Inserting these distributions into Equation (10) gives the
marginal distribution of the orbital inclination for the outer
planet (here we replace v, with the angle i, as the relevant
reference plane for the system)

Fulio) = / Fulisliom) fan e — iv) iy, (23)

The transit probability will be
90°+, N
oy g fulio) di

= " .180° . .
0° f[c (lC) dlC

as per Equation (11). The angle 6, is determined by the orbital
separation of planet “c” and the host star at the time of their
conjunction, 6. = arcsin(R,/r.).

As an example, consider the HAT-P-13 system (Bakos et al.
2009). As of this writing4 only the inner planet, HAT-P-13b, has
been observed to transit. What is the probability that the outer
planet, HAT-P-13c, also transits? Bakos et al. (2009) measure the
orbital inclination of the inner planet to be iy , = 83°4 £ 0°6.
At the time of its conjunction with HAT-P-13, the outer planet
is at a distance of r./ R, = 82.1 &£ 6.1 stellar radii from the star.
This allows us to determine f7, (ip|ib.m) and 6 for the HAT-P-
13 system. For the mutual inclination of the two planets, we
assumed that the orbital inclination of planet “c” was evenly
distributed within Xty max degrees of the orbital inclination
ip, of planet “b.” Figure 4 shows the transit probability of
HAT-P-13c as a function of Apc max-

The probability that planet “c” transits is very dependent upon
what we assume is a reasonable range of mutual inclination in
the HAT-P-13 system. For reference, all of the solar system

(24)

42009 September
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planets are within 3°4 of the Earth’s orbit—except for Mercury
(at 7°). If the mutual inclination of the two planets orbiting
HAT-P-13 is within 3°4, then the outer planet will not transit.
If the two planets are misaligned by up to 7°, then the
transit probability for planet “c” is 7%. The maximum transit
probability of 8.5% occurs if we assume that the two planets
may be inclined within 8° of each other. As the assumed spread
in mutual inclination increases, the transit probability will fall
back to the a priori value of 1.2%.

The transit probability for HAT-P-13c is therefore at most
8.5%.

3.2. Benefits for Target Selection

We now demonstrate how using stellar inclination measure-
ments and the enhanced transit probabilities (Section 2) can aid
in the target selection of transit surveys. As illustrative cases,
we will calculate how many stars need to be observed in a sur-
vey looking for hot Jupiters, and for a separate survey searching
for planets within the habitable-zone. In these examples, we
will make the simplifying assumption that every star has either
a hot Jupiter or habitable-zone planet in orbit, at distances of
R./a =1/100r R,/a = 1/215, respectively.

We assume that the inclinations of the planetary systems are
distributed in two ways. For the hot Jupiters, we use the planetary
inclination distribution determined by Fabrycky & Winn (2009)
from an ensemble of 11 Rossiter—McLaughlin measurements
of spin—orbit alignment. The authors found that aside from the
X0-3 system® the hot Jupiters they considered had planetary
inclinations distributed according to a Rayleigh distribution with
a width parameter of 6°6. Exoplanets within the habitable-zone
may not follow this same planetary inclination distribution. We
use a uniform distribution of planetary inclination within 7°5
of the stellar equator; Earth has an planetary inclination of
72155 to the Sun’s equator. Including either spread of planetary
inclinations into the calculations of transit probabilities acts to
spread out the probability of transit, and make stars with stellar
inclinations far from 90° more likely to show transits. At the
same time, the spread of planetary inclinations makes stars with
measured stellar inclinations near 90° less likely to show transits.
Assuming a measurement of ¥, = 90° &£ 5°, and that planetary
inclinations are uniformly distributed within 7°5 of the stellar
equator, then the transit probability for a habitable-zone planet
at a distance of R, /a = 1/215 star drops from 4.25% to 3.08%
as compared to assuming the orbit is coplanar with the stellar
equator. Conversely, a star with measured stellar inclination of

m = 80° &£ 5° has its transit probability increased from 0.59%
to 1.11%

As our first example, take a survey for hot Jupiters around
solar-type stars. We will require a 95% probability that the sur-
vey detects at least a single transiting planet. From Equation (17)
this means that Py, = 0.95. Although we may arbitrarily set
Py and n;, as shown in the appendix the time required to com-
plete a hot Jupiter survey is minimized if we set Pops = 0.9814.
To find the number of stars needed in the initial sample we must
then solve

n; 1 J
Poe =095=>" (Bi (n j, E) > "Bi(j. k. 0.9814)) .
k=1

j=1
(25)
We must therefore have n; = 29 stars in our initial sample.

> Which appears to be highly misaligned, possibly because of XO-3b’s
migration history.
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We next want to know how many stars out of these 29 will
actually have to be observed photometrically. That is, how many
of the initial targets with measured inclinations near 90° will we
need to look at for transits? We will assume that all of the stellar
inclination measurements have Gaussian uncertainties of 5°.
The transit probability for a hot Jupiter can be calculated for
various orientation measurements of the form 1, & 5° by using
Equation (10) to account for the inclination of the planetary
system:

f90°+5.73° 180°

P (1/[ ) _ J90°—5.73° Jo° fGauss(‘M’ﬁm)fA(W - l) dw di
tr m) — o o .
I 3% fouss (W W) fa(p — i) dip di
(26)
hot Jupiters at a distance of R,/a = 1/10 will show transits up
to a maximum angle of & = 5273. The angle ¢ that defines our

observed subsample solves

90 .
o0 SN Wi P(Yi) i

13 sin i Pu(n) dm

Pops = 0.9814 = 27)

and is ¢ = 24201
To detect at least one hot Jupiter, we must therefore photo-
metrically observe

Nobs = 29sin(24°01) = 11.80 (28)

stars that will have measured stellar inclinations within 24201
of 90°. This will give us a probability of Pye; = 95% of detecting
at least one hot Jupiter. The top panel of Figure 5 shows how
the number of stars that need to be observed varies as a function
of the stellar inclination measurement precision for various
confidence levels. The top panel also shows how the fraction
of the initial target list that will need to be observed varies with
measurement precision. The lower limits in both cases set by the
spread in the distribution of fA(A) as determined by Fabrycky
& Winn (2009).

In a notional survey for habitable-zone planets, we will
also require a 95% chance of detecting at least one transit.
The calculations are similar to those for the survey for hot
Jupiters, except that we will assume that f(A), the distribution
of planetary system inclinations, is evenly distributed within
725 of the stellar equator. Otherwise, we keep the requirement
that Pye; = 0.95, and optimize Pgps in the same way. The time
needed to complete a survey for Earth analogs is minimized if
we set Pops = 0.7746, which means the initial sample size will
be n; = 830 stars. Proceeding in the same way as the hot Jupiter
survey, we will need to observe stars with measured stellar
inclinations out to ¢ = 8212—corresponding to ngps = 117.2
stars that will need to be observed photometrically. The lower
two panels of Figure 5 show how n.ps and how the fraction of
initial stars that need to be observed change as a function of
measurement precision, assuming the planetary inclinations are
within 795 of the stellar equator.

Unlike the case of the hot Jupiters, there is no statistically
compelling information regarding the inclination distribution,
fa, of Earth-analogs. Since the fraction of the stars that would
need to be observed photometrically is tied to this distribution,
Figure 6 illustrates the effect of changing the maximum spread
of the planetary inclination on the curves from the bottom panel
of Figure 5. In the above calculations we used a uniform distri-
bution for f) out to a maximum of 7°5, but here we also plot
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Figure 5. Number of stars that would need to be photometrically observed in a survey for different detection confidence levels. Note that this assumes every star has a

corresponding planet.

the fraction of stars that will need to observed against stellar
inclination measurement precision for a maximum of 15° and
0° (i.e. perfectly aligned). Note the difference between the three
curves becomes most pronounced with higher precision (lower
uncertainty) inclination measurements as the underlying distri-
bution for f) becomes more dominant. Under our assumption
that the uncertainty in 1, is £5°, the fraction of stars that need
to be observed is 0.11, 0.14 and 0.21 for maximum inclinations
of 0°, 7.5° and 15°, respectively.

In both of our example surveys, the number of stars that
need to be observed photometrically is dramatically lower
than the initial sample size. The exact difference will depend
upon the precision of the stellar inclination measurements; we
have assumed Gaussian uncertainties of 5°. The uncertainties
themselves depend upon the method used to measure stellar
inclinations. The two most prominent ways to measure stellar
inclinations are either through spectroscopic measurements of
stellar v sin ¥ or through asteroseismic observations.

4. DISCUSSION
4.1. Spectroscopic v sin Y Inclination Measurements

Spectroscopic measurements of v sin ¢ allow us to measure
stellar inclinations indirectly. If the true rotational period of the
star can be identified through photometric variation—or other
means—and we have an estimate for the radius of the star, we
will be able to calculate the value of sin . Recently, Winn et al.
(2007) and Arentoft et al. (2008) have measured sin i for two

0.5 1 I
| Planetary inclination spread 1
— 15 degrees
[ —-- 7.5 degrees i
ro 0 degrees (no spread) 1
04 [ *

Fraction Observed

! !
0 5 10 15
Uncertainty in ¢ _ (degrees)

Figure 6. Fraction of stars from the initial target list that need to observed
photometrically as a function of the uncertainty in measuring the stellar
inclination. The three curves plotted correspond to differing maximums for
the spread of the planetary inclination distribution.

different stars. The Arentoft group’s work is also particularly
illustrative of the potential pitfalls in any attempt to measure
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sin i: they observed photometric variation on Procyon with a
period of 10.3 & 0.5 days, but found it much more likely that
the true rotational period of Procyon is twice that value.

The use of v siny measurements to constrain stellar incli-
nations is limited by the uncertainties in the measurement of
v sin ¢, the stellar radius, and the stellar rotational period. Spec-
troscopic measurements of v sin ¢ for solar-like stars typically
have fractional uncertainties of 15%-25% (Keppens et al. 1995;
Terndrup et al. 2002). The precision may be increased by using
extremely high resolution spectra (R = 100,000; Carney et al.
2008) to disentangle the line variations caused by rotation and
turbulence. To measure the rotational period of a star, one would
either need clearly identifiable photometric variation, or would
have to observe a star for several months to identify the rota-
tion period in a periodogram (Meibom et al. 2009). Together
with fractional uncertainties in the stellar radius and rotational
period, it is therefore time intensive to measure sin i to better
than 15%-30%.

Using measurements of sin ¥ to constrain stellar inclinations
is complicated by the flatness of the sine function near 90°.
Consider that arcsin(0.9) = 64° and that arcsin(0.995) = 84°.
Any determination of sin ¢ will therefore need to be extremely
precise to yield usable constraints on angles near v = 90°. As
noted previously, this level of precision would require special-
ized, time-intensive observations. However, measurements of
v sin ¥ can also be used to identify and eliminate from consid-
eration stars with stellar inclinations far from 90°. Assuming
a 15% fractional error on sin v, one would be able to identify
28% of stars as unsuitable.

4.2. Asteroseismic Inclination Measurements

Stellar inclinations may also be measured directly through
precise asteroseismological measurements of solar-like oscilla-
tions. These 5 minute acoustic oscillations in the stellar pho-
tosphere can be described as spherical harmonics with the har-
monic numbers n, [, and m. On a non-rotating star the 2/ + 1
m-modes are degenerate and lay on top of one another in fre-
quency space. As the angular velocity of the star increases, the
m-modes undergo rotational splitting, and pull apart from one
another (Ledoux 1951). Additionally, Gizon & Solanki (2003)
show that the relative power in each of the m-modes will depend
upon the stellar inclination. By measuring the magnitude of the
splitting and the relative power of the split modes, it is possible
to determine the angular velocity and stellar inclination of a star
that undergoes solar-like oscillations.

Asteroseismic observations can be conducted using either
photometry or spectroscopy. Gizon & Solanki (2003) and
Ballot et al. (2008) describe the theoretical basis and the
expected uncertainties in measuring stellar inclinations using
photometric asteroseismological observations. Problematically
for surveys of Sun-like stars, both papers calculate that stars with
angular velocities near solar are extremely challenging targets.
In Gizon & Solanki (2003), the formal error on measurements
of the stellar inclination can be very large as a star’s angular
velocity approaches that of the Sun. Nevertheless, photometric
asteroseismology is being conducted from space by the CoRoT,
Kepler, and MOST missions, and on the ground by numerous
observers. To date, the only photometric detection of rotational
splitting in a star other than the Sun has been accomplished
photometrically using the CoRoT spacecraft (Appourchaux et al.
2008); though the authors note inconsistencies in their data as
compared to earlier observations of the same star (Mosser et al.
2005).
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Spectroscopic asteroseismological observing programs have
also multiplied. While none have identified rotational splitting
in an unevolved main sequence star, Bouchy et al. (2005)
observed rotational splitting in the acoustic spectrum of the
G3IV-V star u Arae, and several other groups have come close
to an identification (see, e.g., Bazot et al. 2007). One of the most
ambitious spectroscopic observing collaborations is the SONG
project (Grundahl et al. 2008), which aims to build several
dedicated telescopes spaced in longitude around the world to
allow for continuous observing. Spectroscopic observations
should theoretically provide more precise stellar inclinations
measurements than photometry, since the widths and shapes
of the absorption lines provide additional information about
the photosphere that is not present in luminosity variations.
Work is currently underway to characterize the exact stellar
inclination precision that can be expected from spectroscopic
asteroseismology (T. Campante & H. Kjeldsen 2009, private
communication).

4.3. Practical Applications

Precise measurements of stellar inclinations are a step toward
a practical transit survey of the brightest Sun-like stars in the sky.
One can envision a space-based survey for transiting exoplanets
targeted at these stars. The idea of manufacturing and launching
a suite of nanosatellites, each with a single telescope and targeted
at an individual star is currently under study (Seager 2008). The
goal of the study would be to design and build a space telescope
that fits within the 10 x 10 x 30 cm? triple CubeSat, and to
take advantage of the growing number of piggyback launch
opportunities to place these telescopes into low-Earth-orbit.
The present major challenge is the required pointing stability
to achieve a high enough photometric precision to detect the
transit of an Earth-analog on a low-mass satellite (<5 kg).

The duration of the survey would be largely set by the number
of stars that would need to be observed photometrically for
transits. Each star would need to be observed for at least a year
to cover the full orbital period of an Earth-analog; though it may
be possible to assign individual spacecraft multiple targets. For
the initial stellar inclination measurements, using spectroscopic
vsiny inclination determinations would require photometric
observations spread over at least a stellar rotation period—on the
order of a month for solar-type stars. Asteroseismic inclinations
would be, on average, faster to come by: SONG estimates that
their network, with six dedicated observing stations across the
globe, could measure the inclination of up to a few dozen
stars over one year (H. Kjeldsen 2009, private communication).
Since both methods require a month or less to determine
stellar inclinations, the pacing item in a notional survey is the
year of spaceborne photometry required to check a star for
transits.

In terms of actual telescope time, the photometry for v sin ¥
inclination determinations would require on average 10 minutes
a night over the course of a month, for a total of 5 telescope-
hours per star over that month. The asteroseismic inclination
measurements, using SONG’s estimates, would require about 10
telescope-days per star. Our fiducial Earth analog search would
require inclination measurements on 830 stars, which corre-
sponds to about 170 telescope-days for v sin ¢ measurements,
and about 8400 days for a six telescope SONG network. The
photometric transit survey portion would take approximately
120 telescope-years. Note that even with the time required for
the inclination measurements, this is one seventh the time re-
quired for a comparable blind survey.
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The idea of a targeted space-based transit search is made
feasible by the enhanced transit probabilities that are achiev-
able using stellar inclination constraints. One possible mission
concept would be to use ground-based v sin {y measurements
to eliminate a third of the possible targets from consideration.
Asteroseismology conducted from the ground and from orbiting
triple-CubeSat could then be used to assemble a final target list
for photometric observations. Depending upon the precision of
the asteroseismology, the desired number of detections and the
desired confidence level of achieving these many detections, this
would reduce the number of stars that would need to be observed
from a few thousand to a few hundred. A related proposal, us-
ing only ground-based asteroseismology has been described by
Beatty (2009).

5. SUMMARY

Transit surveys of the brightest solar-like stars are made
difficult by the distribution of these targets across the entire
sky. This makes a traditional point-and-stare photometric survey
unworkable, since each target star would need to be observed
individually. Such a survey of the brightest (V < 7) stars would
require either a prohibitive number of telescopes or a prohibitive
amount of observing time, especially if it is targeting Earth-
analogs in stellar habitable zones. This problem motivated us to
consider the effect of stellar inclination measurements on transit
probabilities and the number of stars that need to be observed
in a photometric survey to statistically expect a detection.

We derived the transit probability for stars, individually and
in an ensemble, with constraints on the stellar inclinations
and with assumptions about the range of planetary system
inclinations. This derivation involved several steps. First, the
stellar inclination constraint was treated as the conditional
distribution in Bayes theorem and combined with our prior
assumption of randomly oriented orbits. Second, the planetary
inclination was included via a joint probability distribution
together with the stellar inclination constraints. These steps
completed the probability distribution for a single star. These
calculations also allowed us to compute the transit probability
for the second planet in a multiplanet system when the other
planet has already been observed to transit. In this case, we used
the orbital plane of the transiting planet in place of the stellar
inclination as the reference plane for the system, and the mutual
inclination of the two planets in place of the planetary system
inclination. An ensemble of stars was treated using the binomial
distribution and the distribution of expected transit detections to
determine the number of stars required to be observed, and the
probability that doing so would yield a detection.

In summary, our first result is the transit probability of a
single planetary system that has measured stellar inclination
constraints. Assuming inclination measurements accurate to 5°,
we find that the transit probabilities for typical hot Jupiters may
be increased to 74.8%, and the transit probabilities for Earth-
analogs may be increased to 4.25%. These calculations may also
be applied directly to finding the transit probability of the second
planet in a multiplanet system where one planet has already been
observed to transit. For the specific case of HAT-P-13, we find
that the transit probability for the outer planet is between 0%
and 8.5%, dependent on what is the assumed spread of the
mutual inclination. Our second result is the estimated number
of stars needed to be observed for transits given a specified
required number of planet detections and desired probability
of achieving those detections. Assuming a 5° uncertainty on
the stellar inclination measurements, we would need to look
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Figure 7. Optimization of the Pgps and n; for an Earth-analog search that will
have a 95% confidence of at least one detection. The minimum amount of time
required to complete the survey (normalized to unity in the figure) occurs when
Pobs = 0.775 and nj = 830.

at 120 stars to have a 95% chance of detecting more than one
Earth-analog. We would have a 50% chance of detecting more
than 3.8. This is about one seventh the number of stars that a
blind transit survey would need to look at for the same yield.

We thank H. Kjeldsen and T. Campante for their helpful
correspondence and useful calculations with regard to aster-
oseismology. We also thank Leslie Rogers for her comments
and discussion. This work was supported in part by the NASA
ASTID program.

APPENDIX
OPTIMIZING Pqps AND n;

The overarching goal in optimizing the Pops and 7; is to min-
imize the length of time needed to complete the survey. Recall
that we start with the initial set of n; target stars whose stellar
inclinations we measure. The exact value of n; will determine,
through the statistics of the binomial distribution, the probabil-
ity Py that a given number of transiting planets are within our
initial target stars. We then observe a fraction of these initial
stars that have stellar inclinations close to 90° photometrically
for transits. The size of this fraction sets the probability Pops
that we observe photometrically the transiting planets hidden
within our initial stars. As described in Equation (21), the size
of this fraction is dependent upon the precision of the stellar
inclination measurements; the more precise the measurements,
the smaller the fraction may be for a fixed Pops.

Consider our notional survey to discover transiting Earth-
analogs. As described in Section 4.3, it would take on average a
month per star to measure stellar inclinations—roughly enough
time to see one complete rotation of a Sun-like star. The
photometric transit observations would take at least one year
per star. Assuming that every star has an Earth-analog, that
stellar inclinations may be measured to £5° and that planetary
inclinations are evenly distributed within 7°5 of the stellar
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equator, Figure 7 shows the effect of varying Py and n; on the
time needed to complete the survey—while keeping the overall
detection probability constant at 0.95. As the number of initial
targets increases, the corresponding fraction (and hence Pypg) of
those stars that need to be photometrically observed decreases.
The minimum amount of time needed to complete the survey
occurs when n; = 830 and P, = 0.7746.

‘While we do not show the optimization of a hot Jupiter survey
in Figure 7, the method is exactly that same as for an Earth
analog survey. The only major difference is that the photometric
observations take about 10 days to complete. Since the time
needed to measure the stellar inclination remains one month,
this pushes a hot Jupiter survey to minimize the number of initial
targets that must be observed for inclination measurements. If
we wish a 95% chance of detecting at least one hot Jupiter, then
this means we will have to set n; = 29 and Py, = 0.9814—
assuming that every star is orbited by a hot Jupiter.
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