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ABSTRACT
We present a reÐned treatment of H, He I, and He II recombination in the early universe. The di†er-

ence from previous calculations is that we use multilevel atoms and evolve the population of each level
with redshift by including all bound-bound and bound-free transitions. In this framework we follow
several hundred atomic energy levels for H, He I, and He II combined. The main improvements of this
method over previous recombination calculations are (1) allowing excited atomic level populations to
depart from an equilibrium distribution, (2) replacing the total recombination coefficient with recombi-
nation to and photoionization from each level calculated directly at each redshift step, and (3) correct
treatment of the He I atom, including the triplet and singlet states.

We Ðnd that is approximately 10% smaller at redshifts than in previous calcu-x
e
(4 n

e
/nH) [800

lations, as a result of the nonequilibrium of the excited states of H that is caused by the strong but cool
radiation Ðeld at those redshifts. In addition, we Ðnd that He I recombination is delayed compared with
previous calculations and occurs only just before H recombination. These changes in turn can a†ect the
predicted power spectrum of microwave anisotropies at the few percent level. Other improvements, such
as including molecular and ionic species of H, including complete heating and cooling terms for the
evolution of the matter temperature, including collisional rates, and including feedback of the secondary
spectral distortions on the radiation Ðeld, produce negligible change to the ionization fraction. The lower

at low z found in this work a†ects the abundances of H molecular and ionic species by 10%È25%.x
eHowever, this di†erence is probably not larger than other uncertainties in the reaction rates.

Subject headings : atomic processes È cosmic microwave background È cosmology : theory È
early universe

1. INTRODUCTION

The photons that Penzias & Wilson (1965) detected
coming from all directions with a temperature of about 3 K
have traveled freely since their last Thomson scattering,
when the universe became cool enough for the ions and
electrons to form neutral atoms. During this recombination
epoch, the opacity dropped precipitously, matter and radi-
ation were decoupled, and the anisotropies of the cosmic
microwave background (CMB) radiation were essentially
frozen in. These anisotropies of the CMB have now been
detected on a range of scales (e.g., White, Scott, & Silk 1994 ;
Smoot & Scott 1998), and developments in the Ðeld have
been very rapid. Recently, two post-COBE missions, the
Microwave Anisotropy Probe (MAP) and the Planck satel-
lite, were approved with the major science goal of determin-
ing the shape of the power spectrum of anisotropies with
experimental precision at a level similar to current theoreti-
cal predictions.

Detailed understanding of the recombination process is
crucial for modeling the power spectrum of CMB aniso-
tropies. Since the seminal work of the late 1960s (Peebles
1968 ; Zeldovich et al. 1968), several reÐnements have been
introduced by, for example, Matsuda, Sato, & Takeda
(1971), Zabotin & NaselÏskii (1982), Lyubarsky & Sunyaev
(1983), Jones & Wyse (1985), Krolik (1990), and others, but
in fact little has changed (a fairly comprehensive overview of
earlier work on recombination is to be found in ° IIIC of Hu
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et al. 1995, hereafter HSSW95). More recently, reÐnements
have been made independently in the radiative transfer to
calculate secondary spectral distortions (DellÏAntonio &
Rybicki 1993 ; Rybicki & DellÏAntonio 1994) and in the
chemistry (Stancil, Lepp, & Dalgarno 1996b). These
improvements may have noticeable e†ects (at the 1% level)
on the calculated shapes of the power spectrum of aniso-
tropies. Given the potential to measure important cosmo-
logical parameters with MAP and Planck (e.g., Jungman et
al. 1996 ; Bond, Efstathiou, & Tegmark 1997 ; Zaldarriaga,
Spergel, & Seljak 1997 ; Eisenstein, Hu, & Tegmark 1998 ;
Bond & Efstathiou 1998), it is of great interest to make a
complete and detailed calculation of the process of recombi-
nation. Our view is that this is in principle such a simple
process that it should be so well understood that it could
never a†ect the parameter estimation endeavor.

Our motivation is to carry out a ““ modern ÏÏ calculation of
the cosmic recombination process. The physics is well
understood, and so it is surprising that cosmologists have
not moved much beyond the solution of a single ordinary
di†erential equation, as introduced in the late 1960s. With
todayÏs computing power, there is no need to make the
sweeping approximations that were implemented 30 years
ago. We therefore attempt to calculate to as great an extent
as possible the full recombination problem. The other di†er-
ence compared with three decades ago is that we are now
concerned with high-precision calculations because of the
imminent prospect of high-Ðdelity data.

It is our intention to present here a coupled treatment of
the nonequilibrium radiative transfer and the detailed
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chemistry. The present investigation was motivated by indi-
cations (HSSW95) that multilevel nonequilibrium e†ects in
H and He, as well as in some molecular species, may have
measurable e†ects on the power spectrum of CMB aniso-
tropies by a†ecting the low-z and high-z tails of the visibility
function e~qdq/dz (where q is the optical depth).

To that e†ect, this paper presents a study of the recombi-
nation era by evolving neutral and ionized species of H and
He and molecular species of H simultaneously with the
matter temperature. We believe our work represents the
most accurate picture to date of how exactly the universe as
a whole became neutral.

2. BASIC THEORY

2.1. T he Cosmological Picture
We will assume that we live in a homogeneous, expand-

ing universe within the context of the canonical hot big
bang paradigm. The general picture is that at some suffi-
ciently early time the universe can be regarded as an
expanding plasma of hydrogen plus some helium, with
around 109 photons per baryon and perhaps some non-
baryonic matter. As it expanded and cooled there came a
time when the protons were able to keep hold of the elec-
trons and the universe became neutral. This is the period of
cosmic recombination.

In cosmology it is standard to use redshift z as a time
coordinate, so that high redshift represents earlier times.
Explicitly, a(t)\ 1/(1 ] z) is the scale factor of the universe,
normalized to be unity today, and with the relationship
between scale factor and time depending on the particular
cosmological model. It is sufficient to consider only hydro-
gen and helium recombination, since the other elements
exist in minute amounts. The relevant range of redshift is
then during which the densities are typical of[10,000,
those that astrophysicists deal with every day, and the tem-
peratures are low enough that there are no relativistic
e†ects.

2.2. T he Radiation Field
In describing the radiation Ðeld and its interaction with

matter, we must use a speciÐc form of the radiative transfer
equation. It should describe how radiation is absorbed,
emitted, and scattered as it passes through matter in a
medium that is homogeneous, isotropic, inÐnite, and
expanding. The basic time-dependent form of the equation
of transfer is

1
c

LI(r, nü , l, t)
Lt

] LI(r, nü , l, t)
Ll

\ j(r, nü , l, t)

[i(r, nü , l, t)I(r, nü , l, t) . (1)

Here the symbols are as follows : I(r, is the speciÐcnü , l, t)
intensity of radiation at position r, traveling in direction nü
(the unit direction vector), with frequency l at a time t (in
units of ergs s~1 cm~2 Hz~1 sr~1) ; l is the path length along
the ray (and is a coordinate-independent path length) ; j is
the emissivity, which is calculated by summing products of
upper excitation state populations and transition probabil-
ities over all relevant processes that can release a photon at
frequency l, including electron scattering ; and i is the
absorption coefficient, which is the product of an atomic
absorption cross section and the number density of
absorbers summed over all states that can interact with
photons of frequency l.

In the homogeneous and isotropic medium of the early
universe, we can integrate equation (1) over all solid angles
u (i.e., integrating over the unit direction vector nü ) :

4n
c

LJ(r, l, t)
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] $ Æ F(r, l, t) \ [
Q

[ j(r, nü , l, t)

[ i(r, nü , l, t)I(r, nü , l, t)]du . (2)

Here J(l, t) is the mean intensity, the zeroth-order moment
of the speciÐc intensity over all angles (in units of ergs s~1
cm~2 Hz~1) ; F is the Ñux of radiation, which is the net rate
of radiant energy Ñow across an arbitrarily oriented surface
per unit time and frequency interval ; and c is the speed of
light. If the radiation Ðeld is isotropic, there is a ray-by-ray
cancellation in the net energy transport across a surface,
and the net Ñux is zero. Also, because of the isotropy of the
radiation Ðeld and the medium being static, we can drop the
dependence upon angle of j and i in equation (2). With the
deÐnition of J, { I du\ 4nJ, this simpliÐes equation (2) to

1
c

LJ(l, t)
Lt

\ j(l, t) [ i(l, t)J(l, t) . (3)

The above equation is for a static medium. An iso-
tropically expanding medium would reduce the number
density of photons as a result of the expanding volume and
reduce their frequencies as a result of redshifting. The term
resulting from the density change will be simply a 3a5 (t)/a(t)
factor, while the redshifting term will involve the frequency
derivative of J(l, t) and hence a factor.la5 (t)/a(t)

Then the equation for the evolution of the radiation Ðeld
as a†ected by the expansion and the sources and sinks of
radiation becomes

dJ(l, t)
dt

\ LJ(l, t)
Lt

[ lH(t)
LJ(l, t)

Ll
\ [3H(t)J(l, t) ] c[ j(l, t) [ i(l, t)J(l, t)] , (4)

where H(t) 4 a5 /a.
This equation is in its most general form and difficult to

solve ; fortunately, we can make two signiÐcant simpliÐca-
tions because the primary spectral distortions2 are of negli-
gible intensity (DellÏAntonio & Rybicki 1993) and the
quasi-static solution for spectral-line proÐles is valid
(Rybicki & DellÏAntonio 1994). The Ðrst simpliÐcation is
that, for the purposes of this paper (in which we do not
study secondary spectral distortions), we set J(l, t)\ B(l, t),
the Planck function, which is observed to approximate J(l)
to at least 1 part in 104 (Fixsen et al. 1996). Thus, we elimi-
nate explicit frequency integration from the simultaneous
integration of all equations (° 2.6). The validity of this
assumption is shown in ° 3.5, where we follow the dominant
secondary distortions of H Lya and H two-photon tran-
sition by including their feedback on the recombination
process and Ðnd that the secondary spectral distortions
from the other Lyman lines and He are not strong enough
to feed back on the recombination process.

The second simpliÐcation is in the treatment of the evolu-
tion of the resonance lines (Lya, etc.), which must still be
treated explicitly ; because of cosmological redshifting they
cause J(l, t) in the lines. These we call the primaryD B(l, t)
distortions. We use escape probability methods for moving
(expanding) media (°° 2.3.3 and 3.1). This simpliÐcation is

2 Not to be confused here with the power spectrum of spatial aniso-
tropies.
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not an approximation but is an exact treatmentÈa simple
solution to the multilevel radiative transfer problem a†ord-
ed by the physics of the expanding early universe.

Not only does using B(l, t) with the escape probability
method instead of J(l, t) simplify the calculation and reduce
computing time enormously, but the e†ects from following
the actual radiation Ðeld will be small compared to the
main improvements of our recombination calculation,
which are the level-by-level treatment of H, He I, and He II,
calculating recombination directly, and the correct treat-
ment of He I triplet and singlet states.

2.3. T he Rate Equations
The species we evolve in the expanding universe are H I,

H II, He I , He II, He III, e~, H~, and The chemistryH2, H2`.
of the early universe involves the reactions of association
and dissociation among these species, facilitated by inter-
actions with the radiation Ðeld, J(l, t). The rate equations
for an atomic system with N energy levels can be described
as

a(t)~3 d[n
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dt
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where the are the rate coefficients between bound levels iP
ijand j, and the are the rate coefficients between boundP

iclevels and the continuum c ; andP
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lisional rates. Here the values of n are physical (as opposed
to comoving) number densities : refers to the numbern

idensity of the ith excited atomic state, to the numbern
edensity of electrons, and to the number density of a con-n

ctinuum particle such as a proton, He II, or He III ; a(t) is the
cosmological scale factor. The rate equations for molecules
take a slightly di†erent form because their formation and
destruction depend on the rate coefficients for the reactions
discussed in ° 2.3.4, and molecular bound states are not
included.

2.3.1. Photoionization and Photorecombination

By calculating photorecombination rates directly toR
cieach level for multilevel H, He I, and He II atoms, we avoid

the problem of Ðnding an accurate recombination coeffi-
cient, the choice of which has a large e†ect on the power
spectra (HSSW95).

Photoionization rates are calculated by integrals of the
incident radiation Ðeld J(l, t) and the bound-free cross
section The photoionization rate in s~1 isp

ic(l).

R
ic

\ 4n
P
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ic
(l)

hP l
J(l, t)dl . (6)

Here i refers to the ith excited state and c refers to the
continuum; is the threshold frequency for ionizationl0from the ith excited state. The radiation Ðeld J(l, t) depends
on frequency l and time t. With as the number density ofn

ithe ith excited state, the number of photoionizations per
unit volume per unit time (hereafter photoionization rate) is
n
i
R

ic
.

By using the principle of detailed balance in the case of
local thermodynamic equilibrium (LTE), the radiative
recombination rate can be calculated from the photoioniza-
tion rate. Then, as described below, the photorecombina-
tion rate can be generalized to the non-LTE case by scaling

the LTE populations with the actual populations and sub-
stituting the actual radiation Ðeld for the LTE radiation
Ðeld. In LTE, the radiation Ðeld J(l, t) is the Planck func-
tion B(l, t). B(l, t) is a function of time t during recombi-
nation because We will call the LTET

R
\ 2.728[1 ] z(t)].

temperature T at early times, where is the(T \ T
R

\ T
M

T
Rradiation temperature and the matter temperature). ToT

Memphasize the Planck functionÏs dependence on tem-
perature, we will use B(l, T ), where T is a function of time.

By detailed balance in LTE we have
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Radiative recombination includes spontaneous and
stimulated recombination, so we must rewrite the above
equation as
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Using the deÐnition of in equation (6),R
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The Ðrst term on the right-hand side is the spontaneous
recombination rate, and the second term on the right-hand
side is the stimulated recombination rate. Here ishPPlanckÏs constant and is BoltzmannÏs constant. ThekBfactor is the correction for stimulated recom-(1[ e~hP l@kB T)
bination (see Mihalas 1978, ° 4.3, for a derivation of this
factor). Stimulated recombination can be treated either as
negative ionization or as positive recombination ; the
physics is the same (see Seager & Sasselov 2000 for some
subtleties). With the LTE expression for recombination (eq.
[8]), it is easy to generalize to the non-LTE case, consider-
ing spontaneous and stimulated recombination separately.
Because the matter temperature and the radiation tem-T

Mperature di†er at low z, it is important to understandT
Rhow recombination depends on each of these separately.

Spontaneous recombination involves a free electron, but
its calculation requires no knowledge of the local radiation
Ðeld because the photon energy is derived from the elec-
tronÏs kinetic energy. In other words, whether or not LTE is
valid, the LTE spontaneous recombination rate holds per
ion, as long as the velocity distribution is Maxwellian. The
local Planck function (as representing the Maxwell
distribution) depends on because the Maxwell distribu-T

Mtion describes a collisional process. Furthermore, since the
Maxwellian distribution depends on so does the spon-T

M
,

taneous rate. To get the non-LTE rate, we only have to
rescale the LTE ion density to the actual ion density :
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To generalize the stimulated recombination rate from the
LTE rate to the non-LTE rate, we rescale the LTE ion
density to the actual ion density and replace the LTE radi-
ation Ðeld by the actual radiation Ðeld J(l, t) because that is
what is ““ stimulating ÏÏ the recombination. The correction
for stimulated recombination depends on because theT

Mrecombination process is collisional ; the term always
remains in the LTE form because equation (8) was derived
from detailed balance, so we have
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Therefore, the total non-LTE recombination rate (R
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The LTE population ratios depend only on(n
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Here is the electron mass, the atomic parameter g is them
edegeneracy of the energy level, and is the ionizationE

ienergy of level i. In the recombination calculation presented
in this paper, we use the Planck function B(l, instead ofT

R
)

the radiation Ðeld J(l, T ) as described earlier.
In the early universe Case B recombination is used. This

excludes recombinations to the ground state and considers
the Lyman lines to be optically thick. An implied assump-
tion necessary to compute the photoionization rate is that
the excited states (n º 2) are in equilibrium with the radi-
ation. Our approach is more general than Case B because
we do not consider the Lyman lines to be optically thick
and do not assume equilibrium among the excited states.
For more details on the validity of Case B recombination,
see ° 3.2.5. To get the total recombination coefficient, we
sum over captures to all excited levels above the ground
state.

To summarize, the form of the total photoionization rate
is
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and the total recombination rate is
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2.3.2. Comparison with the ““ STANDARD ÏÏ Recombination
Calculation of Hydrogen

The ““ standard ÏÏ recombination calculation refers to the
calculation widely used today and Ðrst derived by Peebles
(1968, 1993), Zeldovich, Kurt, & Sunyaev (1968), and Zeldo-
vich & Novikov (1983), updated with the most recent

parameters and recombination coefficient (HSSW95) (see
also ° 3.1).

For a 300-level H atom in our new recombination calcu-
lation, equations (14) and (15) include 300 integrals at each
redshift step. The standard recombination calculation does
not go through this time-consuming task but avoids it
entirely by using a precalculated recombination coefficient
that is a single expression dependent on only. TheT

Mrecombination coefficient to each excited state i is deÐned
by

a
i
(T

M
) \ R
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spon . (16)

Here a is a function of because spontaneous recombi-T
Mnation is a collisional process, as described previously. The

total Case B recombination coefficient is obtained from(a
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We will refer to as the ““ precalculated recombinationa
B
(T

M
)

coefficient ÏÏ because the recombination to each atomic level
i and the summation over i are precalculated for LTE con-
ditions (see Hummer 1994 for an example of how these
recombination coefficients are calculated). Some more
elaborate derivations of have also beena(T

M
) \ f (T

M
, n)

tried (e.g., Boschan & Biltzinger 1998).
The standard recombination calculation uses a photoion-

ization coefficient which is derived from detailedb
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balance using the recombination rate
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To get the non-LTE rate, one uses the actual populations n
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or, with the Saha relation (eq. [13]),
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Constants and variables are as described before. To get the
total photoionization rate, is summed over all excitedb

ilevels. Because the ““ standard ÏÏ calculation avoids use of all
levels i explicitly, the are assumed to be in equilibriumn

iwith the radiation and thus can be related to the Ðrst
excited state number density by the Boltzmann relation,n2s

n
i
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g
i
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With this relation, the total photoionization rate is
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In this expression for the total photoionization rate, the
excited states are populated according to a Boltzmann dis-
tribution. is used instead of because the Saha andT

M
T
RBoltzmann equilibrium used in the derivation are col-

lisional processes. The expression says nothing about the
excited levels being in equilibrium with the continuum
because the actual values of and are used, and then

e
, n1, n2sare proportional ton

i
n2s.To summarize, the standard calculation uses a single

expression for each of the total recombination rate and the
total photoionization rate that is dependent on only.T

M
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The total photoionization rate is
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and the total recombination rate is
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Comparing the right-hand side of equation (23) to our level-
by-level total photoionization rate (eq. [14]), the main
improvement in our method over the standard one is clear :
we use the actual excited level populations assuming non

i
,

equilibrium distribution among them. In this way we can test
the validity of the equilibrium assumption. Far less impor-
tant is that the standard recombination treatment cannot
distinguish between and even though photoioniza-T

R
T
M

,
tion and stimulated recombination are functions of T

R
,

while spontaneous recombination is a function of asT
M

,
shown in equations (14) and (15). The nonequilibrium of
excited states is important at the 10% level in the residual
ionization fraction for while using in photoion-z[ 800, T

Rization and photoexcitation is only important at the few
percent level for (for typical cosmological models).z[ 300
Note that although the precalculated recombination coeffi-
cient includes spontaneous recombination only, stimulated
recombination (as a function of is still included as nega-T

M
)

tive photoionization via detailed balance (see eq. [7]).

2.3.3. Photoexcitation

In the expanding universe, redshifting of the photons
must be taken into account (see eq. [4]). Line photons
emitted at one position may be redshifted out of interaction
frequency (redshifted more than the width of the line) by the
time they reach another position in the Ñow. We use the
Sobolev escape probability to account for this, a method
which was Ðrst used for the expanding universe by
DellÏAntonio and Rybicki (1993). The Sobolev escape prob-
ability (Sobolev 1946), also sometimes called the large
velocity gradient approximation, is not an approximation
but is an exact, simple solution to the multilevel radiative
transfer in the case of a large velocity gradient. It is this
solution that allows the explicit inclusion of the line distor-
tions to the radiation ÐeldÈwithout it our detailed
approach to the recombination problem would be intracta-
ble. We will call the net bound-bound rate for each line
transition where j is the upper level and i is the lower*R
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,

level :
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Here the terms and are the Einstein coefficients ;A
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, B
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, B

ijthe escape probability is the probability that photonsp
ijassociated with this transition will ““ escape ÏÏ without being

further scattered or absorbed. If the photons pro-p
ij

\ 1,
duced in the line transition escape to inÐnityÈthey contrib-
ute no distortion to the radiation Ðeld. If nop

ij
\ 0,

photons escape to inÐnity ; all of them get reabsorbed, and
the line is optically thick. This is the case of primary distor-
tions to the radiation Ðeld, and the Planck function cannot
be used for the line radiation. In general, for thep

ij
> 1

Lyman lines and for all other line transitions. Withp
ij
\ 1

this method we have described the redshifting of photons

through the resonance lines and found a simple solution to
the radiative transfer problem for all bound-bound tran-
sitions. The rest of this section is devoted to deriving p

ij
.

For the case of no cosmological redshifting, the radiative
rates per cubic centimeter for transitions between excited
states of an atom are

n
i
R

ij
\ n

i
B
ij
J (26)

and

n
j
R

ji
\ n

j
A

ji
] n

j
B

ji
J , (27)

where

J \
P
0

=
J(l, t)/(l)dl (28)

and /(l) is the line proÐle function with its area normalized
by

P
0

=
/(l)dl\ 1 . (29)

The line proÐle /(l) is taken to be a Voigt function that
includes natural and Doppler broadening. In principle,
equation (28) is the correct approach. In practice we take
/(l) as a delta function and use J(l, t) instead of TheJ.
smooth radiation Ðeld is essentially constant over the width
of the line, and so the line shape is not important ; we get the
same results using or J(l, t).J

The Sobolev escape probability considers the distance
over which the expansion of the medium induces a velocity
di†erence equal to the thermal velocity (for the case of a
Doppler width) : where is the thermal velo-L \ vth/ o v@ o , vthcity width and v@ the velocity gradient. The theory is valid
when this distance L is much smaller than typical scales of
macroscopic variation of other quantities.

We follow Rybicki (1984) in the derivation of the Sobolev
escape probability. The general deÐnition of escape prob-
ability is given by the exponential extinction law,

p
ij
\ exp [[q(l

ij
)] , (30)

where is the frequency for a given line transition, andl
ijis the monochromatic optical depth forward along aq(l

ij
)

ray from a given point to the boundary of the medium. Here
is deÐned byq(l

ij
)

dq(l
ij
) \ [k8/(l

ij
)dl , (31)

where is the integrated line absorption coefficient, so thatk8
the monochromatic absorption coefficient or opacity is i \

and l is the distance along the ray from the emissionk8/(l
ij
),

point (l \ 0). Rewriting the optical depth for a line proÐle
function (which has units of inverse frequency) of the dimen-
sionless frequency variable with * the widthx \ (l [ l

ij
)/*,

of the line in Doppler units and the central line fre-l
ijquency, we have

dq(l
ij
) \ [ k8

*
/(x)dl . (32)

Here i is the absorption coefficient (deÐned in eq. [1]), with
just dividing out the line proÐle function, andk8

k8 \ hP l
4n

(n
i
B

ij
[ n

j
B

ji
) . (33)
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Using the Einstein relations andg
i
B

ij
\ g

j
B
ji

A
ji
\

the absorption coefficient can also be written as(2hl3/c2)B
ji
,

k8 \ A
ji

j
ij
2

8n
A
n
i
g
j

g
i
[ n

j

B
. (34)

Note that distances along a ray l correspond to shifts in
frequency x. This is due to the Doppler e†ect induced by the
velocity gradient and is the essence of the Sobolev escape
probability approach. For example, the Lya photons
cannot be reabsorbed in the Lya line if they redshift out of
the frequency interaction range. This case will happen at
some frequency x or at some distance l from the photon
emission point, where, because of the expansion, the
photons have redshifted out of the frequency interaction
range. For an expanding medium with a constant velocity
gradient v@\ dv/dl, the escape probability along a ray is
then

p
ij
\ exp

C
[ k8

*
P
0

=
/(x [ l/L )dl

D

4 exp
C
[q

S

P
~=

x
/(x8 )dx8

D
. (35)

The velocity Ðeld has in e†ect introduced an intrinsic escape
mechanism for photons ; beyond the interaction limit with a
given atomic transition, the photons can no longer be
absorbed by the material, even if it is of inÐnite extent, but
escape freely to inÐnity (Mihalas 1978). Here the Sobolev
optical thickness along the ray is deÐned by

qS 4
k8
*

L , (36)

where L is the Sobolev length

L \ vth/ o v@ o\
S3kB T

M
matom

N
o v@ o (37)

and * is the width of the line, which in the case of Doppler
broadening is

*\ l0
c
S3kB T

M
matom

. (38)

With these deÐnitions, equation (36) becomes

q
S
\ j

ij
k8

o v@ o
. (39)

In the expanding universe, the velocity gradient v@ is given
by the Hubble expansion rate H(z), and using the above
deÐnition for k8 ,

qS \ A
ji
j
ij
3[n

i
(g

j
/g

i
)[ n

j
]

8nH(z)
. (40)

To Ðnd the Sobolev escape probability for the ray, we
average over the initial frequencies x, using the line proÐle
function /(x) from equation (29),

p
ij

\
P
~=

=
dx /(x) exp

C
[qS

P
~=

x
/(x8 )dx8

D

\
P
0

1
df exp ([qS f) ,

i.e.,

p
ij
\ 1 [ exp ([qS)

qS
. (41)

Note that this expression is independent of the line proÐle
shape /(x). The escape probability is deÐned as a fre-p

ijquency average at a single point. Finally, we must average
over angle, but in the case of the isotropically expanding
universe, the angle-averaged Sobolev escape probability
takes the same form as above. (For further details on thep

ijSobolev escape probability, see Rybicki 1984 or Mihalas
1978, ° 14.2.)

How does the Sobolev optical depth relate to the usual
meaning of optical depth? The optical depth for a speciÐc
line at a speciÐc redshift point is equivalent to the Sobolev
optical depth,

dq(l
ij
) \ [qS /(x)

dl
L

. (42)

If no other line or continuum photons are redshifted into
that frequency range before or after the redshift point, then
the optical depth at a given frequency today (i.e., summed
over all redshift points) will be equivalent to the Sobolev
optical depth at that past point. Generally, behaviors in
frequency and space are interchangeable in a medium with
a velocity gradient.

In order to derive an expression for the bound-bound
rate equations, we must consider the mean radiation Ðeld J
in the line. For the case of spectral distortions, does notJ
equal the Planck function at the line frequency. We use the
core saturation method (Rybicki 1984) to get usingJ p

ij
;

from this we get the net rate of de-excitations in that tran-
sition ( j ] i), given in equation (25). In general, only the
Lyman lines of H and He II and the He I n1pÈ11s lines have

With this solution we have accomplished twop
ij
\ 1.

things : (1) described the redshifting of photons through the
resonance lines, and (2) found a simple solution to the radi-
ative transfer problem for all bound-bound lines.

Peculiar velocities during the recombination era may
cause line broadening of the same order of magnitude as
thermal broadening over certain scales (A. Loeb 1998,
private communication). Because we use J(l) \ B(l, T ), the
radiation Ðeld is essentially constant over the width of the
line, and so the line shape is not important. Similarly, the
peculiar velocities will not a†ect the Sobolev escape prob-
ability because it is independent of line shape (eq. [41]). If
peculiar velocities were angle dependent, there would be an
e†ect on the escape probability, which is an angle-averaged
function. Only for computing spectral distortions to the
CMB, where the line shape is important, should line
broadening from peculiar velocities be included.

2.3.4. Chemistry

Hydrogen molecular chemistry has been included
because it may a†ect the residual electron densities at low
redshift (z\ 200). During the recombination epoch, the H2formation reactions include the H~ processes

H ] e~% H~ ] c , (43)

H~] H % H2] e~ , (44)

and the processesH2`
H ] H` % H2`] c , (45)
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H2`] H % H2] H` , (46)

together with

H ] H2% H ] H ] H (47)

and

H2] e~% H ] H ] e~ (48)

(see Lepp & Shull 1984). The direct three-body process for
formation is signiÐcant only at much higher densities.H2The most recent rate coefficients and cross sections are

listed with their references in the Appendix (see also Cen
1992 ; Puy et al. 1993 ; Tegmark et al. 1997 ; Abel et al. 1997 ;
Galli & Palla 1998).

We have not included the molecular chemistry of Li, He,
or D. In general, molecular chemistry only becomes impor-
tant at values of z\ 200. Recent detailed analyses of H, D,
and He chemistry (Stancil et al. 1996a) and of Li and H
chemistry (Stancil, Lepp, & Dalgarno 1996b ; Stancil & Dal-
garno 1997) presented improved relative abundances of all
atomic, ionic, and molecular species. The values are certain-
ly too small to have any signiÐcant e†ect on the CMB
power spectrum.

There are two reasons for this. The visibility function is
e~qdq/dz, where q is the optical depth. The main component
of the optical depth is Thomson scattering by free electrons.
Because the populations of Li, LiH, HeH`, HD, and the
other species are so small relative to the electron density,
they do not a†ect the contributions from Thomson scat-
tering. Second, these atomic species and their molecules
themselves make no contribution to the visibility function
because they have no strong opacities. HD has only a weak
dipole moment. And while LiH has a very strong dipole
moment, its opacity during this epoch is expected to be
negligible because of its tiny (\10~18) fractional abundance
(Stancil et al. 1996b). Similarly, the fractional abundance of

(\10~22) is too small to have an e†ect on the CMBH2D`
spectrum (Stancil et al. 1996b). (For more details, see Palla
et al. 1995 and Galli & Palla 1998.) An interesting addi-
tional point is that, because of the smaller energy gap
between n \ 2 and the continuum in it, Li I actually recom-
bines at a slightly lower redshift than hydrogen does (see,
e.g., Galli & Palla 1998). Of course this has no signiÐcant
cosmological e†ects.

We have also excluded atomic D from the calculation. D,
like H, has an atomic opacity much lower than Thomson
scattering for the recombination era conditions. D parallels
H in its reactions with electrons and protons and recom-
bines in the same way and at the same time as H (see Stancil
et al. 1996b). Although the abundance of D is small ([D/
H]^ 10~5), its Lyman photons are still trapped because
they are shared with hydrogen. This is seen, for example, by
the ratio of the isotopic shift of D Lya to the width of the H
Lya line, on the order of 10~2. Therefore, by excluding D we
expect no change in the ionization fraction and hence none
in the visibility function.

While the nonhydrogen chemistry is still extremely
important for cooling and triggering the collapse of primor-
dial gas clouds, it is not relevant for CMB power spectrum
observations at the level measurable by MAP and Planck.

2.4. Expansion of the Universe
The di†erential equations in time for the number den-

sities and matter temperature must be converted to di†eren-

tial equations in redshift by multiplying by a factor of dz/dt.
The redshift z is related to time by the expression

dz
dt

\ [(1] z)H(z) , (49)

with scale factor

a(t) \ 1
1 ] z

. (50)

Here is the Hubble factorH(z) \ a5 /a

H(z)2\ H02
C )0
1 ] zeq

(1] z)4] )0(1] z)3

] )
K
(1] z)2] )"

D
, (51)

where is the density contribution, is the curvature)0 )
Kcontribution, and is the contribution associated with the)"cosmological constant, with and)0] )

R
] )

K
] )" \ 1

Here is the redshift of matter-)
R

\ )0/(1] zeq). zeqradiation equality,

1 ] zeq\ )0
3(H0 c)2

8nG(1] fl)U
, (52)

where is the neutrino contribution to the energy densityflin relativistic species for three massless neutrino(fl ^ 0.68
types), G the gravitational constant, U the photon energy
density, and the Hubble constant today, which will beH0written as 100 h km s~1 Mpc~1. Since we are interested in
redshifts it is crucial to include the radiation contri-zD zeq,bution explicitly (see HSSW95).

2.5. Matter Temperature
The important processes that are considered in following

the matter temperature are Compton cooling, adiabatic
cooling, and bremsstrahlung cooling. Less important but
also included are photoionization heating, photorecombin-
ation cooling, radiative and collisional line cooling, col-
lisional ionization cooling, and collisional recombination
cooling. Note that throughout the relevant time period, col-
lisions and Coulomb scattering hold all the matter species
at very nearly the same temperature. ““Matter ÏÏ here means
protons (and other nuclei), plus electrons, plus neutral
atoms ; dark matter is assumed to be decoupled.

Compton cooling is a major source of energy transfer
between electrons and photons. It is described by the rate of
transfer of energy per unit volume between photons and free
electrons when the electrons are near thermal equilibrium
with the photons :

dE
e,c

dt
\ 4pTUn

e
kB

m
e
c

(T
R

[ T
M
) , (53)

or

dT
M

dt
\ 8

3
pTUne
m

e
cntot

(T
R

[ T
M
) (54)

(Weymann 1965), where is the electron energy density,E
e,cand c are constants as before, is the ThomsonkB, m

e
, pTscattering cross section, is the radiation temperature, andT

Ris the electron or matter temperature. To get from equa-T
Mtion (53) to equation (54) we use the energy of all particles ;

collisions among all particles keep them at the same tem-
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perature. Here represents the total number density ofntotparticles, which includes all of the species mentioned in
° 2.3, while U represents the radiation energy density
(integrated over all frequencies) in units of ergs cm~3 :

U \
P
0

=
u(l)dl , (55)

where u(l, t)\ 4nJ(l, t)/c. In thermal equilibrium the radi-
ation Ðeld has a frequency distribution given by the Planck
function, J(l, t)\ B(l, and thus in thermal equilibriumT

R
),

the energy density is

u(l, t)\ 4n
c

Bl(TR
) , (56)

and the total energy density U is given by StefanÏs law

U \ 8nhP
c3

P
0

=
(ehP l@kBTR [ 1)~1l3 dl\ a

R
T

R
4 . (57)

The spectrum of the CMB remains close to blackbody
because the heat capacity of the radiation is very much
larger than that of the matter (Peebles 1993), i.e., there are
vastly more photons than baryons.

Adiabatic cooling as a result of the expansion of the uni-
verse is described by

dT
M

dt
\ [2H(t)T

M
(58)

since c\ 5/3 for an ideal gas implies TheT
M

P (1 ] z)2.
following cooling and heating processes are often represent-
ed by approximate expressions. We used the exact forms,
with the exception of bremsstrahlung cooling and the negli-
gible collisional cooling : (1) bremsstrahlung, or free-free
cooling :

"brem\ 25ne6Z2
33@2hPm

e
c3
A2nkB T

m
e

B1@2

] gff ne(np
] nHe II

] 4nHe III
) , (59)

where is the free-free Gaunt factor (Seaton 1960), thegff n
pnumber density of protons, and the numbernHe II

nHe IIIdensity of singly and doubly ionized helium, respectively,
and other symbols are as previously described ; (2) photo-
ionization heating :

%
p~i

\ ;
i/1

N
n
i
4n
P
l0

= p
ic
(l)

hP l
B(l, T

R
)hP(l[ l0)dl ; (60)

(3) photorecombination cooling :

"
p~r

\ ;
i/1

N
n
e
n
c

A n
i

n
e
n
c

BLTE
4n
P
li

= p
i
(l)

hP l

]
C2hP l3

c2 ] B(l, T
R
)
D
e~hP l@kBTMhP(l[ l0)dl ; (61)

(4) line cooling :

"line\ hP l0*R
ji

; (62)

(5) collisional ionization cooling :

"
c~i

\ hP l0C
ic

; (63)

and (6) collisional recombination heating :

"
c~r

\ hP l0C
ci

. (64)

Here is the frequency at the ionization edge. We usedl0approximations for collisional ionization and recombi-
nation cooling because these collisional processes are essen-
tially negligible during the recombination era. andC

ic
C

ciare the collisional ionization and recombination rates,
respectively, computed as in, e.g., Mihalas (1978), ° 5.4.

Thus, with

dT
M

dz
\ dt

dz
dT

M
dt

, (65)

the total rate of change of matter temperature with respect
to redshift becomes

(1] z)
dT

M
dz

\ 8pTU
3H(z)m

e
c

n
e

n
e
] nH ] nHe

] (T
M

[ T
R
) ] 2T

M
] 2

3kB ntot

]
1

H(z)
("brem[ %

p~i
] "

p~r

] "
c~i

] "
c~r

] "line) . (66)

Here is the total number density of helium, and thenHedenominator from eq. [54]) takes intone ] nH ] nHe (ntotaccount the fact that the energy is shared among all the
available matter particles. All the terms except adiabatic
cooling in equation (66) involve matter energy conversion
into photons. In particular, Compton and bremsstrahlung
cooling are the most important, and they can be thought of
as keeping very close to until their timescales becomeT

M
T
Rlong compared with the Hubble time, and thereafter the

matter cools as Previous recombination cal-T
M

P (1 ] z)2.
culations only included Compton and adiabatic cooling ;
however, the additional terms add improvements only at
the 10~3% level in the ionization fraction. The reason for
the negligible improvement is that it makes little di†erence
which mechanism keeps close to early on, and adia-T

M
T
Rbatic cooling still becomes important at the same time.

2.6. Summary of Equations
The system of equations to be simultaneously integrated

in redshift is

(1] z)
dn

i
(z)

dz
\ [ 1

H(z)

]
G
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e
(z)n

c
(z)P
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(z)P
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] 3n
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(z) , (67)
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and

(1] z)
dJ(l, z)

dz
\ 3J(l, z) [ c

H(z)
[ j(l, z) [ i(l, z)J(l, z)] .

(69)
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For J(l, z)\ B(l, z)\ B(l, (see ° 2.2), equation (69)T
R
)

can be omitted because the expansion of the universe pre-
serves the thermal spectrum of noninteracting radiation,
and we can use the Sobolev escape probability method for
the primary spectral line distortions. The system of coupled
equations (67) that we use contains up to 609 separate equa-
tions, 300 for H (one for each of a maximum of 300 levels we
considered), 200 for He I, 100 for He II, 1 for He III, 1 for
electrons, 1 for protons, and 1 for each of the Ðve molecular
or ionic H species. This system of equations, along with
equation (68), is extremely sti†, that is, the dependent vari-
ables are changing on very di†erent timescales. We used
the Bader-DeuÑhard semi-implicit numerical integration
scheme, which is described in Press et al. (1992). To test the
numerical integration we checked at each time step that the
total charge and total number of particles are conserved to
one part in 107.

3. RESULTS AND DISCUSSION

By an ““ e†ective three-level ÏÏ H atom we mean a hydro-
gen atom that includes the ground state, Ðrst excited state,
and continuum. In an e†ective three-level atom, the energy
levels between n \ 2 and the continuum are accounted for
by a recombination coefficient that includes recombinations
to those levels. This should be distinguished from an actual
three-level atom, which would completely neglect all levels
above n \ 2 and would be a hopeless approximation. Good
accuracy is obtained by considering an n-level atom, where
n is large enough. In practice, we Ðnd that a 300-level atom
is more than adequate. We do not explicitly include angular
momentum states l, whose e†ect we expect to be negligible.
In contrast to the e†ective three-level H atom, the 300-level
H atom has no recombination coefficient with ““ extra ÏÏ
levels. The ““ standard ÏÏ recombination calculation refers to
the calculation with the e†ective three-level atom that is
widely used today and Ðrst derived by Peebles (1968) and
Zeldovich et al. (1968), updated with the most recent
parameters and recombination coefficient (HSSW95).

The primordial He abundance was taken to be Y
P
\ 0.24

by mass (Schramm & Turner 1998). The present-day CMB
temperature was taken to be 2.728 K, the central valueT0determined by the FIRAS experiment (Fixsen et al. 1996).

3.1. T he ““E†ective T hree-L evel ÏÏ Hydrogen Atom
For comparison with the standard recombination calcu-

lation that only includes hydrogen (see Peebles 1968, 1993 ;
Scott 1988), we reduce our chemical reaction network to an
e†ective three-level atom, i.e., a two-level hydrogen atom
plus continuum. The higher atomic energy levels are
included by way of the recombination coefficient, which
can e†ectively include recombination to hundreds of
levels. The following reactions are included : H

n/2,l/2s ]c% e~] H`, andH
n/1] c%H

n/2,l/2p, H
n/1] 2c%

H
n/2,l/2s.As described in Peebles (1993), we omit the recombi-

nations and photoionizations to the ground state because
any recombination directly to the ground state will emit a
photon with energy greater than 13.6 eV, where there are
few blackbody photons, and this will immediately reionize a
neighboring H atom. We include the two-photon rate from
the 2s state with the rate s~1 (Goldman"2sh1s \ 8.22458
1989). The most accurate total Case B recombination coeffi-

cient is by Hummer (1994) and is Ðtted by the function

a
B
\ 10~19 atb

1 ] ctd
m3 s~1 , (70)

where a \ 4.309, b \ [0.6166, c\ 0.6703, d \ 0.5300, and
K et al. 1991 ; see also Verner &t \T

M
/104 (Pe� quignot

Ferland 1996).
Consideration of detailed balance in the e†ective three-

level atom leads to a single ordinary di†erential equation
for the ionization fraction :

dx
e

dz
\

[x
e
2 nH a

B
[ b

B
(1[ x

e
)e~hP l2s@kBTM][1] K"2sh1s nH(1 [ x

e
)]

H(z)(1] z)[1 ] K"2sh1s nH(1[ x
e
) ] Kb

B
nH(1 [ x

e
)]

(71)

(see, e.g., Peebles 1968 ; extra terms included in Jones &
Wyse 1985, for example, are negligible). Here is thex

eresidual ionization fraction, that is, the number of electrons
compared to the total number of hydrogen nuclei (nH).
Here the Case B recombination coefficient thea

B
\ a

B
(T

M
),

total photoionization rate b
B
\ a

B
(2nm

e
kB T

M
/hP2)3@2as described in ° 2.3.2, is the frequencyexp ([E2s/kB T

M
) l2sof the 2s level from the ground state, and the redshifting rate
where is the Lya rest wavelength. NoteK 4 ja3/[8nH(z)], jathat is used in equation (71) and in because the tem-T

M
b
Bperature terms come from detailed balance derivations that

use Boltzmann and Saha equilibrium distributions, which
are collisional descriptions. In the past, this equation has
been solved [for simultaneously with a form of equa-x

e
(z)]

tion (66) containing only adiabatic and Compton cooling.
We refer to the approach of equation (71) as the ““ standard
calculation.ÏÏ

For the comparison test with the standard recombination
calculation, we also use an e†ective recombination coeffi-
cient, but we use three equations to describe the three reac-
tions listed above. That is, we simpliÐed equation (67) to
three equations, one for the ground-state population (n1),one for the Ðrst excited state population and one for the(n2),electrons (for H recombination n

e
\ n

p
) :

(1] z)
dn1(z)

dz
\ [ 1

H(z)
(*R2ph1s ] *R2sh1s) ] 3n1 , (72)
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dn2(z)

dz
\ [ 1

H(z)
[n

e
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p
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B
[ n2s(z)bB

[ *R2ph1s [ *R2sh1s]] 3n2 , (73)
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dz
\ [ 1

H(z)
[n2s(z)bB
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e
(z)n

p
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B
]] 3n

e
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(74)

The remaining physical di†erence between our e†ective
three-level atom approach and that of the standard calcu-
lation is the treatment of the redshifting of H Lya photons
(included in the terms). In our calculation the red-*R2p~1sshifting is accounted for by the Sobolev escape probability
(see ° 2.3.3). Following Peebles (1968, 1993), the standard
calculation accounts for the redshifting by approximating
the intensity distribution as a step and in e†ect takes the
ratio of the redshifting of the photons through the line to
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the expansion scale that produces the same amount of red-
shifting. It can be shown that PeeblesÏs step method con-
sidered as an escape probability scales as where is1/qS, qSthe Sobolev optical depth. For high Sobolev optical depth,
which holds for H Lya during recombination for any
cosmological model, the Sobolev escape probability also
scales as 1/qS :

lim
qS31

p
ij
\ lim

qS31

1
qS

(1[ e~qS)\ 1
qS

. (75)

Therefore, the two approximations are equivalent for Lya,
although we would expect di†erences for lines with qS [ 1,
where p ] 1. Because we treat recombination in the same
way as Peebles (1968, 1993), no individual treatment of
other lines is permitted, and therefore there are no other
di†erences between the two calculations for this simple case.
Note that with PeeblesÏs step method to compute *R2p~1sand the assumption that the above equationsn1\ nH [ n

p
,

will reduce to the single ordinary di†erential equation (eq.
[71]).

The results from our e†ective three-level recombination
calculation are shown in Figure 1, plotted along with values
from a separate code as used in HSSW95, which represents
the standard recombination calculation updated with the
most recent parameters. The resulting ionization fractions
are equal, which shows that our new approach gives exactly
the standard result when reduced to an e†ective three-level
atom. Two other results are plotted for comparison,
namely, values of taken from Peebles (1968) and Jones &x

eWyse (1985). Their di†erences can be largely accounted for
by the use of an inaccurate recombination coefficient with
a
B
(T

M
)PT

M
~1@2.

As an aside, we note the behavior for in our curvez[ 50
and the HSSW95 one. This is caused by inaccuracy in the
recombination coefficient for very low temperatures. The
downturn is entirely artiÐcial and could be removed by
using an expression for that is more physical at smalla

B
(T )

temperatures. The results of our detailed calculations are
not believable at these redshifts either since accurate model-
ing becomes increasingly difficult as a result of numerical
precision as T approaches zero. But in any case the optical
depth back to such redshifts is negligible, and the real uni-

FIG. 1.ÈComparison of e†ective three-level hydrogen recombination
for the parameters h \ 1.0. Note that the Jones &)tot \ 1.0, )

B
\ 1.0,

Wyse (1985) and Peebles (1968) curves overlap, as does our curve with the
HSSW95 one.

verse is reionized at a similar epoch (between z\ 5 and 50
certainly).

3.2. Multilevel Hydrogen Atom
The purpose of a multilevel hydrogen atom is to improve

the recombination calculation by following the population
of each atomic energy level with redshift and by including
all bound-bound and bound-free transitions. This includes
recombination to and photoionization from all levels
directly as a function of time, in place of a parameterized
recombination and photoionization coefficient. The indi-
vidual treatment of all levels in a coupled manner allows for
the development of departures from equilibrium among the
states with time and feedback on the rate of recombination.
Since the accuracy of the recombination coefficient is prob-
ably the single most important e†ect in obtaining accurate
power spectra (HSSW95), it makes sense to follow the level
populations as accurately as possible.

In the multilevel H atom recombination calculation, we
do not consider individual l states (with the exception of 2s
and 2p) but assume that the l sublevels have populations
proportional to 2l ] 1. The l sublevels only deviate from
this distribution in extreme nonequilibrium conditions
(such as planetary nebulae). In their H recombination calcu-
lation, DellÏAntonio & Rybicki (1993) looked for such
l-level deviations for n ¹ 10 and found none. For n [ 10,
the l states are even less likely to di†er from an equilibrium
distribution because the energy gaps between the l sublevels
are increasingly smaller as n increases.

3.2.1. Results from a Multilevel H Atom

Figure 2 shows the ionization fraction from recombi-x
enation of a two-, 10-, 50-, 100-, and 300-level H atom, com-

pared with the standard e†ective three-level results. The
fraction converges for the highest n-level atom calcu-x

elations. The e†ective three-level atom actually includes
about 800 energy levels via the recombination coefficient
(e.g., Hummer 1994).

Figure 2 shows that the more levels that are included in
the hydrogen atom, the lower the residual The simplex

e
.

explanation is that the probability for electron capture
increases with more energy levels per atom. Once captured,
the electron can cascade downward before being reionized.
Together this means that adding more higher energy levels
per atom increases the rate of recombination. Eventually x

econverges as the atom becomes complete in terms of elec-
tron energy levels, i.e., when there is no gap between the
highest energy level and the continuum (see Fig. 3). Ultima-
tely the uppermost levels will have gaps to the continuum
that are smaller than the thermal broadening of those levels,
and so energy levels higher than about n \ 300 do not need
to be considered, except perhaps at the very lowest redshifts.

For other reasons entirely, our complete (300-level) H
atom recombination calculation gives an lower than thatx

eof the e†ective three-level atom calculation. The faster pro-
duction of hydrogen atoms is due to nonequilibrium pro-
cesses in the excited states of H, made obvious by our new,
level-by-level treatment of recombination. The details are
described in ° 3.2.2 below.

3.2.2. Faster H Recombination in Our L evel-by-L evel
Recombination Calculation

The lower in our calculation compared to the standardx
ecalculation is caused by the strong but cool radiation Ðeld.

SpeciÐcally, both a faster downward cascade rate and a
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FIG. 2.ÈMultilevel hydrogen recombination for the standard CDM
parameters h \ 0.5 (top), and for)tot\ 1.0, )

B
\ 0.05, )tot\ 1.0, )

B
\ 1.0,

h \ 1.0 (bottom), both with K. The ““ e†ective three-Y
P
\ 0.24, T0\ 2.728

level ÏÏ calculation is essentially the same as in HSSW95 and uses a recom-
bination coefficient that attempts to account for the net e†ect of all
relevant levels. We Ðnd that we require a model that considers close to 300
levels for full accuracy. Note also that although we plot all the way to
z\ 0, we know that the universe becomes reionized at z[ 5 and that our
calculations (as a result of numerical precision at low T ) become unreliable
for in the upper two curves and for in the other curves.z[ 50 z[ 20

lower total photoionization rate contribute to a faster net
recombination rate.

By following the population of each atomic energy level
with redshift, we relax the assumption used in the standard
calculation that the excited states are in equilibrium. In

FIG. 3.ÈEnergy separations between various hydrogen atomic levels
and the continuum. The solid curve shows the energy width of the same
energy levels as a result of thermal broadening. Thermal broadening was
calculated using The frequency of the highest atomicl(2kB T

M
/mH c2)1@2.

energy level (n \ 300, with an energy from the ground state of 109676.547
cm~1 ; the continuum energy level is 109677.766 cm~1) was used for l, but
a thermal broadening value for any atomic energy level would overlap on
this graph.

addition, we calculate all bound-bound rates that control
equilibrium among the bound states. In the standard calcu-
lation, equilibrium among the excited states n º 2 is
assumed, meaning that the net bound-bound rates are zero.
Figure 4 shows that the net bound-bound rates are actually
di†erent from zero at The reason for this is that atz[ 1000.
low temperatures, the strong but cool radiation Ðeld means
that high-energy transitions are rare as a result of few high-
energy photons. More speciÐcally, photoexcitation and
stimulated photode-excitation for high-energy transitions
become rare (e.g., 70È10, 50È4, etc.). In this case, sponta-
neous de-excitation dominates, causing a faster downward
cascade to the n \ 2 state. In addition, the faster downward
cascade rate is faster than the photoionization rate from the
upper state, and one might view this as radiative decay
stealing some of the depopulation ““ Ñux ÏÏ from photoioniza-
tion. Both the faster downward cascade and the lower
photoionization rate contribute to the faster net recombi-
nation rate.

The cool radiation Ðeld is strong, so photoexcitations
and photode-excitations are rapid among nearby energy
levels (e.g., 70È65, etc. ; see Fig. 4). What we see in Figure 4 is
that with time, after the n \ 70 energy levelz[ 1000,
becomes progressively decoupled from the distant lower
energy levels (n \ 2, 3, . . . 20, . . .) but remains tightly
coupled to its nearby ““ neighbors ÏÏ (n \ 60, 65, etc.). This
explains the departures from an equilibrium Boltzmann dis-
tribution (in the excited states) as seen in the shape of the
curves in Figure 5.

Figure 5 illustrates the nonequilibrium of the excited
states by showing the ratio of populations of the excited
states compared to a Boltzmann equilibrium distribution
with respect to n \ 2. We Ðnd that the upper levels of the
hydrogen atom are not in thermal equilibrium with the
radiation, i.e., the excited levels are not populated according
to a Boltzmann distribution. The excited states are in fact
overpopulated relative to a Boltzmann distribution. This is
not a surprise for the population of the n \ 2 state, which is
strongly overpopulated compared to the n \ 1 ground
state, and so should be all n º 2 states because all Lyman

FIG. 4.ÈHow the bound-bound rates of large energy separation (e.g.,
n \ 70È20) go out of equilibrium at low T , illustrated using an upper level
of n \ 70 for deÐniteness. The case of equilibrium corresponds to net
bound-bound rates of zero. Each upward and downward bound-bound
rate for a given transition is represented by the same curve ; nonequilib-
rium occurs where a single curve separates into two as redshift decreases.
The rates shown are for the sCDM model.
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FIG. 5.ÈRatio of the actual number densities of the excited states and number densities for a Boltzmann distribution of excited states at di†erent(n
i
) (n

i
*)

redshifts for recombination within the standard CDM model. See ° 3.2.2 for details. We give two di†erent plots with linear and logarithmic y-axes and
di†erent redshift values to show a wider range of out-of-equilibrium conditions. The ratio approaches a constant for high n at a given z because the
high-energy (Rydberg) states are all very close in energy and thus have similar behavior (i.e., remain coupled to the radiation Ðeld and each other).

lines remain optically thick during recombination. What is
surprising is that all excited states develop a further over-
population with respect to n \ 2 and each other. Note that
this is not a population inversion. The recombination rate
to a given high level is faster than the downward cascade
rate, and this causes a ““ bottleneck ÏÏ creating the overpopu-
lation. Figure 5 shows that all states are in equilibrium at
high redshifts, with the highest states going out of equi-
librium Ðrst, followed by lower and lower states as the red-
shift decreases. The factor by which the excited states are
overpopulated approaches a constant at high n for a given
redshift, with this factor increasing as z decreases. The ratio
is constant because the high-energy level Rydberg states
have very similar energy levels to each other, with a rela-
tively large energy separation from the n \ 2 state (i.e., the
exponential term in eq. [21] dominates over the ratios,g

iand the exponential term is similar for all of the Rydberg
states). Figure 5 also shows an enormous ratio at low red-
shift (z\ 500) for number densities of the actual excited
states to the number densities of a Boltzmann distribution
of excited states, on the order of 106. At such a low redshift,
there are almost no electrons in the excited states (D10~20
cm~3), and so unlike the case of higher redshifts, the ratio is
only an illustration of the strong departure from an equi-
librium distribution ; the actual populations are very low in
any case.

In comparison with the standard equilibrium capture-
cascade calculation for the unusual situation describeda

B
,

above (caused by the strong but cool radiation Ðeld) leads
to higher e†ective recombination rates for the majority of
excited states without increasing photoionization pro-
portionally. This results in a higher net rate of production of
neutral hydrogen atoms, i.e., a lower x

e
.

3.2.3. Accurate Recombination versus Recombination Coefficient

To demonstrate why the nonequilibrium in the excited
states of H a†ects the recombination rate, we must consider
the di†erence in our new treatment of recombination com-
pared to the standard treatment. An important new beneÐt
of our level-by-level calculation lies in replacing the recom-
bination coefficient with a direct calculation of recombi-
nation to and photoionization from each level at each

redshift step. In other words, we calculate the recombi-
nation rate and the photoionization rate using individual
level populations and parameters of the excited states i,

;
i/1

N
n
e
n
p
R

ci
\ n

e
n
p

;
i/1

N A n
i

n
e
n
p

BLTE
4n
P
l0

= p
i
(l)

hP l

]
C2hP l3

c2 ] B(l, T
R
)
D
e~hP l@kBTM dl , (76)

and similarly for the photoionization rate,
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For the standard recombination calculation, the recombi-
nation rate is
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and the photoionization rate is
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In this last equation, the excited state populations are
hidden by the Boltzmann relation with (see ° 2.3.2). Then2simportant point here is that our method allows redistri-
bution of the H level populations over all 300 levels at each
redshift step, which feeds back on the recombination
process via equation (77) and leads to the lower shown inx

eFigure 2. This redistribution of the level populations is not
possible in the standard calculationÏs equation (79), which
only considers the populations and and considersn

e
, n1, n2sthe excited level populations n [ 2s to be proportional to

in an equilibrium distribution.n2sA small improvement in our new recombination treat-
ment over the standard treatment is in our distinguishing
the various temperature dependencies of recombination.
Photoionization and stimulated recombination are radi-
ative, so they should depend on Spontaneous recombi-T

R
.

nation is collisional and depends on (see ° 2.3.1). In theT
Mstandard calculation, the radiative nature of recombination
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FIG. 6.ÈComparison of ionization rates. The upper curves are photoionization rates, the lower curves are collisional ionization rates. The left panel
shows a model with the standard CDM parameters, while the right panel shows an extreme baryon cosmology.

and photoionization is overlooked because both the recom-
bination coefficient and the photoionization coefficient are
a function of only (eqs. [78] and [79]). Although adia-T

Mbatic cooling (eq. [58]) does not dominate until quite low
redshifts it still contributes partially to matter(z[ 100),
cooling throughout recombination. The resulting di†erence
between and in the net recombination rate a†ectsT

M
T
R

x
eat the few percent level at for the popular cosmol-z[ 300

ogies and has an even larger e†ect for models.high-)
B

3.2.4. Collisions

The standard recombination calculation omits collisional
excitation and ionization because at the relevant tem-
peratures and densities they are negligible for a three-level
hydrogen atom (Matsuda et al. 1971). We have found that
the collisional processes are also not important for the
higher levels, even though those electrons are bound with
little energy. In models, collisional ionization andhigh-)

Bcollisional recombination rates for the highest energy levels
are of the same order of magnitude as the photoionization
and recombination rates, though not greater than them (see
Fig. 6).

3.2.5. Departures from Case B

Case B recombination excludes recombination to the
ground state and considers the Lyman lines to be optically
thick (i.e., photons associated with all permitted radiative
transitions to n \ 1 are assumed to be instantly
reabsorbed). An implied assumption necessary to compute
the photoionization rate is that the excited states (n º 2) are
in equilibrium with the radiation. Unlike the standard
recombination calculation, our method allows departures
from Case B because the Lyman lines are treated by the
Sobolev escape probability method, which is valid for any
optical thickness, and our method allows departures from
equilibrium of the excited states (° 3.2.1). We Ðnd that the
excited states depart from equilibrium at redshifts so[800,
Case B does not hold then. However, our calculations show
that for hydrogen all Lyman lines are indeed optically thick
during all of hydrogen recombination, so Case B holds for
H recombination above redshifts ^800.

Figure 7 shows that the Lyman lines are not optically
thick at earlier times, e.g., during helium recombination,
where we Ðnd some optically thin H Lyman lines. The
Sobolev escape probability treats this consistently, which is

necessary because we evolve H, He I, and He II simulta-
neously.

3.2.6. Other Recent Studies

The previous study that was closest in approach to our
own was that of DellÏAntonio & Rybicki (1993), who calcu-
lated recombination for a 10-level hydrogen atom in order
to estimate the spectral distortions to the CMB blackbody
radiation spectrum. Ten levels are insufficient to calculate
recombination accurately because the higher energy levels
of the atom are completely ignored (see Fig. 3). However,
the accuracy of the ionization fraction was sufficient to(x

e
)

determine the magnitude of the spectral distortions. Their
recombination model treated individual levels but used a
recombination coefficient to each level of the form T

M
~1@2.

Because the form of the recombination coefficient domi-
nates the H recombination process, our models are not
equivalent, and so there is little use in comparing the results.

More recently, Boschan & Biltzinger (1998) derived a
new parameterized recombination coefficient to solve the
recombination equation of the standard calculation and to
generate spectral distortions in the CMB. Their calculation

FIG. 7.ÈSobolev optical depth for the H Lyman lines for two di†er-(qS)ent cosmological models. From upper to lower the curves represent the
optical depth in the Lyman transitions from n \ 2 (i.e., Lya), 10, 50, 100,
and 270. The curves show that all the Lyman transitions are optically thick
during H recombination but some are optically thin(z[ 2000) (qS \ 1)
earlier, during He recombination (zZ 2000).
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di†ers from ours in that their recombination coefficient is
precalculated. Hence, it is not an interactive part of the
calculation and does not allow the advantages that our
calculation does, mainly the feedback of the nonequilibrium
in the excited states on the net recombination rate. While
they include pressure broadening for a cuto† in the parti-
tion function, they neglect thermal broadening. A more
serious problem is their method of inclusion of stimulated
recombination, as originally suggested by Sasaki & Taka-
hara (1993), who included stimulated recombination as
positive recombination instead of negative ionization. The
physics (as described in ° 2.3.1) and our computational
results are the same regardless of whether stimulated
recombination is treated as positive recombination or nega-
tive ionization. However, this may not be the case computa-
tionally for the standard calculation, if it is not treated with
care. We defer a full discussion of these matters to a
separate paper (Seager & Sasselov, in preparation).

We have also investigated how we can approximate our
calculations, so that other researchers can obtain approx-
imately accurate results without the need to follow 300
levels in a hydrogen atom. Because the net e†ect of our new
H calculation is a faster recombination (a lower freeze-out
ionization fraction), our results can be reproduced by artiÐ-
cially speeding up recombination in the standard calcu-
lation. Further details are described in Seager, Sasselov, &
Scott (1999).

3.3. Helium
We compute helium and hydrogen recombination simul-

taneously. The recombination of He III into He II and He II

into He I is calculated in much the same way as hydrogen,
with recombination, photoionization, redshifting of the
n1pÈ11s lines (in H these are the Lyman lines), inclusion of
the 21sÈ11s two-photon rates, collisional excitation, col-
lisional de-excitation, collisional ionization, and collisional
recombination, as described in °° 2.3.1È2.3.3. The multilevel
He I atom includes the Ðrst four angular momentum states
up to the level n \ 22, above which only the principal
quantum number energy levels and transitions are used.
Figure 8 (which shows the levels up to n \ 4 only) indicates
how much more complicated the He I atom is compared
with H or the hydrogenic He II. Our multilevel He II atom
includes the Ðrst four angular momentum states up to the
level n \ 4, above which only the principal quantum
number energy levels and transitions are used. Photoioniza-
tions from any He I excited state are allowed only into the
ground state of He II because there are few photons ener-
getic enough ([40 eV) to do more than that. Two electron
transitions in He I are negligible at recombination era tem-
peratures.

Cosmological helium recombination was discussed
explicitly in Matsuda et al. (1969, 1971, hereafter MST),
Sato, Matsuda, & Takeda (1971), and to a lesser extent in
Lyubarsky & Sunyaev (1983), while several other papers
give results but no details (e.g., Lepp & Shull 1984 ; Fahr &
Loch 1991 ; Galli & Palla 1998). The main improvement in
our calculation over previous treatments of helium is that
we use a multilevel He II atom, a multilevel He I atom with
triplets and singlets treated correctly, and evolve the popu-
lation of each energy level with redshift by including all
bound-bound and bound-free transitions. This is not pos-
sible for the standard recombination calculation method
(eq. [71]) extended to He I, using an e†ective three-level He I

FIG. 8.ÈGrotrian diagram for He I, showing the states with n ¹ 4 and
the continuum. In practice, our model atom explicitly contains the Ðrst
four angular momentum states up to n \ 20 and 120 principal quantum
number energy levels beyond.

atom with only a singlet ground state, singlet Ðrst excited
state, and continuum.

3.3.1. Results from He I Recombination

Figure 9 shows the ionization fraction through He II,x
eHe I, and H recombination, plotted against the standard H

calculation that includes He II and He I recombination via
the Saha equation. For completeness we give the helium

FIG. 9.ÈHelium and hydrogen recombination for two cosmological
models with and K. The Ðrst step from right to left isYP \ 0.24 T0\ 2.728
recombination of He III to He II, the second step is He II to He I, and the
third step is H recombination.
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Saha equations here : for He I % He II,
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and for He II % He III,
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Here the sÏs are ionization potentials, is the total numbernHdensity of hydrogen, is the total number fraction offHehelium to hydrogen and ourfHe \ nHe/nH \Y
P
/4(1[ Y

P
),

deÐnition of results in the complicated-lookingx
e
4 n

e
/nHleft-hand sides. The extra factor of 4 on the right-hand side

for He I % He II arises from the statistical weight factors.
While our improved agrees fairly closely with Sahax

erecombination for He II (see ° 3.3.4), the di†erence in fromx
eSaha recombination during He I recombination is dramatic.

Our new detailed treatment of He I shows He I recombi-
nation Ðnishing just after the start of H recombination (see
Fig. 9), i.e., signiÐcantly delayed compared with the Saha
equilibrium case. This is di†erent from the earlier calcu-
lations (e.g., MST), in which He I recombination is Ðnished
well before H recombination begins. In this previous case,
He I recombination still a†ected the CMB anisotropy
power spectrum on small angular scales because the di†u-
sion damping length grows continuously and is sensitive to
the full thermal history (HSSW95). In our new case, particu-
larly for our low models, He I recombination is still)

BÐnishing at the very beginning of H recombination, which
further a†ects the power spectrum at large angular scales
(see ° 3.7). We show a ““ blowup ÏÏ of the two helium recombi-
nation epochs in Figure 10.

3.3.2. Physics of He I Recombination

The physics of He I recombination can be summarized as
follows. There are three major aspects to it : (1) the He I has
excited states that are able to retain charge ; but (2) being
very close to the continuum, the highly excited states are
easily photoionized by the radiation Ðeld at z^ 3000 ; then
(3) we have a standard hydrogenic-like Case B recombi-

FIG. 10.ÈDetails of helium recombination for the standard CDM cos-
mology (top) and the cosmology (bottom). The dashed lines showhigh-)

Bour new results, and the dotted lines show the results assuming Saha
equilibrium.

nation, which is una†ected by neutral H removing He I

21pÈ11s (resonance line) photons.
The He I atom has a metastable, i.e., very slow, set of

statesÈthe triplets (e.g., n3pÈn1s). Therefore, overall the
excited states of He I can naturally retain more charge than
a simple hydrogenic system under Boltzmann equilibrium.
The situation would resemble what we found for H recom-
bination with the enhanced populations of the higher states
and would lead to faster reduction of However, the highx

e
.

excited states of He I are much more strongly ““ packed ÏÏ
toward the continuum compared to those of H; the energy
di†erence between the 3p levels and the continuum is 1.6 eV
for He I versus 1.5 eV for H, compared to 24.6 eV versus
13.6 eV for the ground-state continuum energy di†erence.
This is enough to depopulate the triplets (whose ““ ground
state ÏÏ is n \ 23s), given the much higher radiation tem-
perature during He I recombination. Left on its own under
these circumstances, He I would recombine much like the
standard Case B e†ective three-level H atom, i.e., slower
than Saha recombination. There is one possible obstacleÈit
is the existence of some neutral H, which could ““ steal ÏÏ He I

resonance line photons, invalidate the e†ective Case B, and
make it a Saha recombination instead. However, our
detailed calculation shows that neutral H during He I

recombination is not able to accomplish that, and the
process is not described by Saha equilibrium.

Figure 11 shows that Saha equilibrium recombination is
invalid for He I, by comparing two competing absorption
processes of the He I 21pÈ11s (in H this is Lya) photons : (1)
photoexcitation by the He I 11sÈ21p transition and (2)
photoionization of the ground state of H. The third curve
shows the Saha equilibrium rate. Figure 11 clearly shows
that process (2) is negligible (in contradiction to the dis-
cussion in HSSW95). The destruction rate of the He I

21pÈ11s photons by the cosmological redshift and by the
21pÈ11s two-photon rate is much smaller than the He I

11sÈ21p photoexcitation rate. To be doubly sure that
absorption of these photons by hydrogen is negligible, we
explicitly included the relevant rate in our models and
found no discernible e†ects. In order for He I recombination

FIG. 11.ÈThis Ðgure shows why the Saha equilibrium recombination
rate for He I is not valid. Comparing the dotted and dashed lines,(RSaha)the photoexcitation rate (i.e., photoabsorption rate) for He 11s[21p (RHe)is orders of magnitude greater than the photoionization rate for H (RH)
from the same He I 21p[11s photon pool ; there is no possibility for H to
““ steal ÏÏ the photons to speed up He I recombination. For Saha recombi-
nation to be valid, as well as For the sCDM modelRH [RHe, RH ºRSaha.shown here, He I recombination begins around z\ 3000.
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to be approximated by Saha equilibrium, one of the three
processes described above would have to be faster than or
equal to the Saha equilibrium rate, which we do not Ðnd to
be the case.

The recombination of He I is slow for the same reasons
that H recombination is, namely, because of the optically
thick n1pÈ11s transitions, which slow cascades to the
ground state, and the exclusion of recombinations to the
ground state. In other words, He I follows a Case B recombi-
nation. Because the ““ bottleneck ÏÏ at n \ 2 controls recom-
bination, it is not surprising that He I and H recombination
occur at a similar redshift ; the ionization energy of n \ 2 is
similar in both. He I recombination is slower than H recom-
bination because of its di†erent atomic structure. The
excited states of He I are more tightly packed, and the
21pÈ11s energy di†erence is greater than that of H. The
strong radiation Ðeld keeps the ratio of photoionization
rate/downward cascade rate higher than in the H case,
resulting in a slower recombination.

We Ðnd that the strong radiation Ðeld also causes the
triplet states to be virtually unpopulated. The lack of elec-
trons in triplet states is easily understood by considering the
blackbody radiation spectrum. At He I recombination
(z^ 3000), the blackbody radiation peak is around 2 eV, so
there are around 11 orders of magnitude more photons that
can ionize the lowest triplet state 23s (4.8 eV) than the
singlet ground state (24.6 eV) since both are on the steeply
decreasing Wien tail. It is interesting to note that in planet-
ary nebulae, where the young, hot ionizing star produces
most of its energy in the UV, the opposite occurs : the He I

atoms have few electrons in the singlet states ; instead, most
of them are in the triplet states.

There is one more possible method to speed up He I

recombination, and that is collisional rates between the
triplets and singlet states. If fast enough, the collisional rates
would provide another channel to keep hold of captured
electrons (by pumping them into the triplet states faster
than they can be reionized). The triplets are 3 times as
populated as the singlets as a result of the statistical weight
factors. By forcing the collisional rates to be greater than
the recombination rates and the bound-bound radiative
rates, we Ðnd an extremely fast He I recombination, approx-
imated by the Saha equilibrium. Essentially, we force elec-
trons from the singlets into the triplets faster than they can
cascade downward and faster than they can be photoion-
ized out of the triplets. In reality, the collisions are negligi-
ble, a few orders of magnitude less than the radiative rates.
It is important to note that apart from collisions, the singlet
and triplet states are only connected via the n3pÈn1s tran-
sitions, which are orders of magnitude slower than the
23sÈ11s rate. We note here that MST stated that the col-
lisional rates were high enough to cause equilibrium
between the triplet and singlet states. One must be careful to
compare all relevant rates, and we keep all of them in our
code. We Ðnd that the allowed radiative rates (e.g., photoex-
citation and photode-excitation) are greater than the col-
lisional rates. Therefore, the allowed radiative rates control
the excited statesÏ population distribution, not the col-
lisional rates. In other words, electrons in the singlet states
are jumping between bound singlet states faster than the
collisional rates can send them into the triplet states.

3.3.3. E†ective T hree-L evel Calculation for He I

We note here that MST used an e†ective three-level He I

singlet atom and calculated He I recombination in the same

way as the standard H calculation (eq. [71]) with the appro-
priate He I parameters. When we follow their treatment, we
get essentially the same result as our multilevel He I calcu-
lation. We are not sure why MST obtained such a fast He I

recombination.
As with hydrogen, we have also investigated what is

required to achieve an accurate solution for helium, without
modeling the full suite of atomic processes. We have found
that the use of the ““ e†ective three-level ÏÏ equations for
helium (as described in MST), together with an appropriate
recombination coefficient for singlets only (eq. [82]), results
in a very accurate treatment of during the time ofx

e
(z)

helium recombination. In detail, it is necessary to follow
hydrogen and helium recombination simultaneously,
increasing the number of di†erential equations to solve.
However, little accuracy is in fact lost by treating them
independently since recombination is governed by dramatic
changes in timescales through Boltzmann factors and the
like and is a†ected little by small changes in the number of
free electrons at a given time. Further details are discussed
in Seager et al. (1999).

Although our model does not explicitly use a recombi-
nation coefficient, it does allow us to calculate one easily.
To aid other researchers, it is worth presenting a Ðt for the
singlet-only Case B recombination coefficient for He I

(including recombinations to all states except the ground
state) from the data in Hummer & Storey (1998). Hummer
& Storey (1998) compute photoionization cross sections
that are more accurate than the ones we use (Hofsaess 1979)
but are not publicly available. Following the functional
forms used in the Ðts of Verner & Ferland (1996), we Ðnd
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with a \ 10~16.744, b \ 0.711, K, and ÐxedT1\ 105.114 T2arbitrarily at 3 K. This Ðt is good to less than 0.1% over the
relevant temperature range (4000È10,000 K), and still fairly
accurate over a much wider range of temperatures.

3.3.4. He II Recombination

He II recombination occurs too early to a†ect the power
spectrum of CMB anisotropies. For completeness, we
mention it brieÑy here. He II recombination is fast because
of the very fast two-photon rate. For most cosmologies the
two-photon rate is faster than the net recombination rate,
meaning that as fast as electrons are captured from the
continuum they can cascade down to the ground state.
Because of this, there is essentially no ““ bottleneck ÏÏ at the
n \ 2 level. In high-baryon models, He II recombination can
be approximated using the Saha recombination. As shown
in Figure 9, He II recombination is slightly slower than the
Saha recombination for low-baryon models.

3.3.5. W hat Controls Recombination?

H recombination is largely controlled by the 2sÈ1s two-
photon rate, which, except for low-baryon cases, is much
faster than the H Lya rate. The net recombination rate, net
2sÈ1s rate, and net Lya rate are compared for di†erent cos-
mologies in Figure 12. Figures 13 and 14 show the same
rate comparison for He I and He II. The three Ðgures all
have the same scale on the x- and y-axes for easy compari-
son. He I recombination is controlled by the 21pÈ11s rate
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FIG. 12.ÈWhat controls H recombination? The net 2pÈ1s rate (dashed) compared to the net 2sÈ1s two-photon rate (dotted) and the net recombination
rate (solid) for four di†erent cosmologies. Except for and low-h models (e.g., the sCDM model), the 2sÈ1s rate dominates. The solid vertical linelow-)

Brepresents where 5% of the atoms have recombined.

rather than the 21sÈ11s rate, as previously stated (e.g.,
MST). Figure 13 (for He I) also illustrates the slow net
recombination rate, which is the primary factor in the slow
Case B He I recombination. Figure 14 also illustrates that

He II in the and h models has a 2sÈ1s rate fasterhigh-)Bthan the net recombination rate, meaning that there is no
slowdown of recombination as a result of n \ 2, and the
Saha equilibrium approximation is valid (see ° 3.3.4).

FIG. 13.ÈWhat controls He I recombination? The net 21pÈ11s rate (dashed lines) compared to the net 21sÈ11s two-photon rate (dotted lines) and the net
recombination rate (solid lines) for four di†erent cosmologies. Except for and high-h models, the 21pÈ11s rate dominates, in contrast to H. The solidhigh-)

Bvertical line represents where 5% of the atoms have recombined.
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FIG. 14.ÈWhat controls He II recombination? The net 2pÈ1s rate (dashed lines) compared to the net 2sÈ1s two-photon rate (dotted lines) and the net
recombination rate (solid lines) for four di†erent cosmologies. Except for and low-h models, the 2sÈ1s rate dominates during recombination, and thelow-)

B2pÈ1s at the start of recombination. The solid vertical line represents where 5% of the atoms have recombined.

The rates change with cosmological model. Physically,
this is because all of the rates are very sensitive to the
baryon density. The 21pÈ11s rates are further a†ected by the
Hubble factor because the Sobolev approximation (eqs.
[41] and [40]) depends on the velocity gradient. Whether
most of the atoms in the universe recombined via a 2pÈ1s or
a 2sÈ1s two-photon transition depends on the precise values
of the cosmological parameters. A conÐdent answer to that
question is still not known, given todayÏs parameter uncer-
tainties.

3.4. Atomic Data and Estimate of Uncertainties
Our approach in this work has been to include all rele-

vant degrees of freedom of the recombining matter in a
consistent and coupled manner. This requires special atten-
tion to the quality of the atomic data used. The challenge
lies in building a consistent model for all energy levels and
transitions, not just for the low-lying ones, which are often
better known experimentally and theoretically.

3.4.1. H and He II

Hydrogen and the hydrogenic ion of helium have exactly
known rate coefficients for radiative processes from precise
quantum mechanical calculations (uncertainties below 1%).
We use exact values for the bound-bound radiative tran-
sitions and for radiative recombination (see Appendix), as
in, e.g., Hummer (1994). For more details, see Hummer &
Storey (1987), but also Brocklehurst (1970) and Johnson
(1972). In particular, the rate of radiative recombination to
level n of a hydrogenic ion can be evaluated from the photo-
ionization (bound-free) cross section for level n, withp

nc
(l),

the standard assumption of detailed balance (see ° 2.3.1).
For hydrogenic bound-free cross sections, we follow, in
essence, SeatonÏs work (Seaton 1959), with its asymptotic
expansion for the Gaunt factor (see Brocklehurst 1970).

Note that the weak dependence of the Gaunt factor on
wavelength has a noticeable e†ect in our Ðnal recombi-
nation rate calculation. Given our application, we do not
require the resolution of resonances, as achieved for a few
transitions by the Opacity Project (TOPbase ; Cunto et al.
1993). Like Hummer (1994), we work with the n-levels
assuming that the l sublevels have populations proportional
to 2l ] 1. The resulting uncertainties for hydrogenic radi-
ative rates at low temperatures (T ¹ 105 K) certainly do not
exceed the 1% level.

Collisional rate coefficients cannot be calculated exactly.
So, compared to the hydrogenic radiative rate coefficients,
the situation for the bound-bound collisional rates and col-
lisional ionization is poor, with errors typically about 6%
and as high as 20% in some cases (Percival & Richards
1978). A number of methods are used to evaluate electron-
impact excitation cross sections of hydrogen-like ions
(Fisher et al. 1997). These most recent values compare well
to the older sources (Johnson 1972 ; Percival & Richards
1978). The helium ion, He II, is hydrogenic and was treated
accordingly. We basically followed Hummer & Storey
(1987) and Hummer (1994) in building the model atom. For
our application, collisional processes are negligible, so that
the large uncertainties that still persist for the collisional
rates have no impact on our results.

3.4.2. He I

Helium, in its neutral state, poses a challenge for building
a multilevel atomic model of high precision. Unlike atomic
hydrogen, no exact solutions to the equationSchro� dinger
are available for helium. However, very high precision
approximations are now available (Drake 1993, 1994),
which we have used. These approximations are essentially
exact for all practical purposes. The largest relativistic cor-
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rection comes from singlet-triplet mixing between states
with the same n, L , and J but is still small. Transition rates
were calculated following the recent comprehensive He I

model built by Smits (1996) and some values in Theodosiou
(1987). The source of our photoionization cross sections was
TOPbase (Cunto et al. 1993) and Hofsaess (1979) for small
n ; above n \ 10, we used scaled hydrogenic values. New
detailed calculations (Hummer & Storey 1998) show that
the He I photoionization cross sections become strictly
hydrogenic at about n [ 20. The uncertainties in the He I

radiative rates are at the 5% level and below.
The situation with the collisional rates for He I is predict-

ably much worse than for He I radiative rates, with good
R-matrix calculations existing only for n ¹ 5 (Sawey & Ber-
rington 1993). The collisional rates at large n are a crucial
ingredient in determining the amount of singlet-triplet
mixing, but fortunately collisions are not very important for
the low-density conditions in the early universe, so the large
uncertainty in these rates does not e†ect our calculation.
The Born approximation, which assumes proportionality to
the radiative transition rates, is used (see Smits 1996) to
calculate the collisional cross sections for large n.

For the 21sÈ11s two-photon rate for He I, we used the
value s~1 (Drake et al. 1969), which di†ers from"HeI \ 51.3
a previously used value (Dalgarno 1966) by D10%. An
uncertainty even of this magnitude would still make little
di†erence in the Ðnal results. For the He II 2sÈ1s two-
photon rate, we used the value s~1 (for"HeI \ 526.5
hydrogenic ions this is essentially Z6 times the value for H)
from Lipeles et al. (1965). Dielectronic recombination for
He I is not at all important during He I recombination.
While dielectronic recombination dominates at tem-
peratures above 6 ] 104 K, for the range of temperatures
relevant here it is at least 10 orders of magnitude below the
radiative recombination rate (using the Ðt referred to in
Abel et al. 1997).

3.4.3. Combined Error from Atomic Data

We have gathered together the uncertainties in the
atomic data in order to estimate the resulting uncertainty in
our derivation of The atomic data with the dominantx

e
.

e†ect on our calculation are the set of bound-free cross
sections for all H and He I levelsÈnot so much any individ-
ual values, but the overall consistency of the sets (which are
taken from di†erent sources). The di†erences between our
model atom and HummerÏs (1994) reÑect the uncertainty in
the atomic data. To test the e†ect on our hydrogenic results,
we compared the results of an e†ective three-level atomx

eusing HummerÏs (1994) recombination coefficient with the
results using a recombination coefficient calculated with
our own model H atom. We Ðnd maximum di†erences of
1% at z\ 300, which corresponds to measurable e†ects on
CMB anisotropies of much less than 1%.

The error in arising from He I is more difficult tox
ecalculate. We estimate it to be considerably less than 1%

because the low-level (n ¹ 4) bound-bound and bound-free
radiative rates dominate He I recombination, and, as
described above, those data are accurate.

3.5. Secondary Distortions in the Radiation Field
In our recombination calculation we follow ““ secondary ÏÏ

distortions in the radiation Ðeld that could a†ect the recom-
bination process at a later time. The secondary distortions
are caused by the primary distortions that are frozen into

the radiation Ðeld. At a later time they are redshifted into
interaction frequency with other atomic transitions. Explic-
itly, we follow (1) H Lya photons and (2) H 2sÈ1s photons.
By the time of H recombination, these photons have been
redshifted into an energy range where they could photoion-
ize H (n \ 2). In addition, we follow (3) He I 21pÈ11s and (4)
He I 21sÈ11s. By the time of H recombination, these photons
have been redshifted into an energy range that could pho-
toionize H (n \ 1). And Ðnally, we also follow (5) He II Lya
photons and (6) He II 2sÈ1s photons. By the time of H
recombination, these photons have been redshifted into an
energy range that could photoionize H (n \ 1). These He II

photons bypass He I because the photons have not been
redshifted into a suitable energy range for interaction.

Here we only attempt to investigate the maximum e†ects
of secondary spectral distortions. To that end, we do not
include additional distortions that are smaller. For
example, Lyman lines other than (1), (3), and (5), whose
distortions are smaller than Lya, will produce a comparably
smaller feedback on photoionization. The He I singlet
recombination photons could theoretically photoionize
He I triplet states, but, as previously discussed, there are vir-
tually no electrons in the triplet states, so this process is also
negligible. Another possible e†ect is due to the similar
energy levels of H and He II : For example,*EHeII \ 4*EH.
the transition from He II (n \ 4) to (n \ 2) produces the
same frequency photons as the transition from H (n \ 2) to
(n \ 1). These transitions are theoretically competing for
photons, and this e†ect can be important for other astro-
physical situations (e.g., planetary nebulae) where H and
He II simultaneously exist. However, any such e†ect is
negligible for primeval recombination because during He II

recombination the amount of neutral H is very small
([H/He II]\ 10~8), and during H recombination there is
almost no He II ([He II/H]\ 10~10).

Because we are only investigating maximum e†ects, we
assume the photons were emitted at line center and are
redshifted undisturbed until their interaction with H (n \ 1)
or H (n \ 2), as described above. We also assume two
photons at half the energy for the 2sÈ1s transitions, com-
pared to the 2pÈ1s transitions. The distorting photons
emitted at a time are absorbed at a later time z, wherezem

z\ zem ledge/lem . (83)

Here is the photoionization edge frequency where theledgephotons are being absorbed, and is the photonÏs fre-lemquency at emission. The distortions are calculated as
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where is the Planck function at the time ofB[lem, T
R
(zem)]

emission ; and are the Einstein coefficients ; isA
ji
, B

ji
, B

ij
p
ijthe Sobolev escape probability for the line ; and the other

variables are as described previously.
The distortions (1) and (2) were previously discussed by

Rybicki & DellÏAntonio (1993). They pointed out that the
e†ect from (1) should be small because the Lya distortion
must be redshifted by at least a factor of 3 to have any e†ect.
This means that the Lya photons produced at z[ 2500
will only a†ect the Balmer continuum at whenz[ 800
the recombination process (and any possibility of photo-
ionization) is almost entirely over.
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We Ðnd that including the distortions (1)È(6) improves x
eduring H recombination at less than the 0.01% level. This

di†erence is far too small to make a signiÐcant change in the
power spectrum, and it is negligible compared to the major
improvements in this paper, which are the level-by-level
treatment of H, He I, and He II, allowing departures of the
excited state populations from an equilibrium distribution,
calculating recombination directly to each excited state, and
the correct treatment of He I triplet and singlet states.
However, the removal of these distorting photons by photo-
ionization must be taken into account when calculating
spectral distortions to the CMB blackbody, which we plan
to study in a later paper.

3.6. Chemistry
Including the detailed hydrogen chemistry (see ° 2.3.4)

marginally a†ects the fractional abundances of protons and
electrons at low z. However, the correction is of the order
10~2 at z\ 150. This change in the electron densityx

ewould change the Thomson scattering optical depth by
D10~5, too little to make a di†erence in the CMB power
spectrum.

On the other hand, as shown in Figure 15, the di†erent
that we Ðnd will lead to fractional changes of similarx

e
(z)

size in molecular abundances at low z since forH2,
example, is formed via H~, which is a†ected by the residual
free electron density. The delay in He I recombination com-
pared to previous studies causes a similar delay in forma-
tion of He molecules (P. Stancil 1998, private
communication). However, with the exception of noHe2`,
changes are greater than those caused by the residual free
electron density at freeze-out. Since molecules can be
important for the cooling of primordial gas clouds and the
formation of the Ðrst objects in the universe, the precise
determination of molecular abundances is an important
issue (e.g., Lepp & Shull 1984 ; Tegmark et al. 1997 ; Abel et
al. 1997 ; Galli & Palla 1998). However, the roughly
10%È20% change in the abundance of some chemical
species is probably less than other uncertainties in the reac-
tion rates (A. Dalgarno 1998, private communication). With
this in mind, we suspect no drastic implications for theories
of structure formation.

3.7. Power Spectrum
Even relatively small di†erences in the recombination

history of the universe can have potentially measurable

e†ects on the CMB anisotropies, and so we might expect
our two main changes (one in H and one in He) to be
noticeable in the power spectrum. As a Ðrst example, Figure
16 compares the di†erence in the anisotropy power spec-
trum derived from our new to that derived from thex

e
(z)

standard recombination (essentially identical to thatx
edescribed in HSSW95), for hydrogen recombination only.

Here the are squares of the amplitudes in a sphericalC
lharmonic decomposition of anisotropies on the sky (the

azimuthal index m depends on the choice of axis and so is
irrelevant for an isotropic universe). They represent the
power and angular scale of the CMB anisotropies by
describing the rms temperatures at Ðxed angular separa-
tions averaged over the whole sky (see, e.g., White, Scott, &
Silk 1994). These depend on the ionization fractionC

l
x
ethrough the precise shape of the thickness of the photon

last-scattering surface (i.e., the visibility function). Since the
detailed shape of the power spectrum may allow determi-
nation of fundamental cosmological parameters, the signiÐ-
cance of the change in is evident. To determine the e†ectx

eof the change in we have used the code CMBFASTx
e
,

written and made available by Seljak & Zaldarriaga (1996),
with a slight modiÐcation to allow for the input of an arbi-
trary recombination history.

The dominant physical e†ect arising from the new H cal-
culation comes from the change in at low z. A processx

eseldom mentioned in discussions of CMB anisotropy
physics (which is otherwise quite comprehensive ; e.g., Hu,
Silk, & Sugiyama 1997) is that the low-z tail of the visibility
function results in partial erasure of the anisotropies pro-
duced at zD 1000. The optical depth in Thomson scattering
back to, for example, z\ 800 can be[q\ cpT / n

e
(dt/dz)dz]

several percent. This partial rescattering of the photons
leads to partial erasure of the by an amount e~2q. Let usC

llook at the standard cold dark matter (CDM) calculation
Ðrst (Fig. 16a). Our change in the optical depth back to
z^ 800 (see Fig. 2) is around 1% less than that obtained
using the standard calculation, and so we Ðnd that the
anisotropies su†er less partial erasure by about 2%. There is
no e†ect on angular scales larger than the horizon at the
scattering epoch (here redshifts of several hundred), so that
all multipoles are a†ected except for the lowest hundred or
so lÏs. Hence, this e†ect is largely a change in the overall
normalization of the power spectrum, with some additional
di†erences at low l that will be masked by the ““ cosmic

FIG. 15.ÈThe e†ect of the improved treatment of recombination on H chemistry. Shown is the standard CDM model. Solid lines are values from the
standard calculation, dashed and dotted lines from our improved results.
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FIG. 16.ÈDi†erences in CMB power spectra arising from the improved treatment of hydrogen for (a) the standard CDM parameters )tot \ 1.0,
h \ 0.5, K, and (b) an extreme baryon model with h \ 1.0 (for which there is relatively little e†ect). The fractional)

B
\ 0.05, YP \ 0.24, T0\ 2.728 )

B
\ 1,

di†erence plotted is between our new hydrogen recombination calculation and the standard hydrogen recombination calculation (e.g., in HSSW95), with the
sense of and with the two calculations normalized to have the same amplitude for the initial conditions. The solid lines are for temperature, whileC

l
new [ C

l
old,

the dashed lines are for the (““ E ÏÏ mode) polarization power spectrum.

variance.ÏÏ In addition, there are smaller e†ects as a result of
changes in the generation of anisotropies in the low-z tail,
giving small changes in the acoustic peaks, which can be
seen as wiggles in the Ðgure. Since the partial erasing e†ect
is essentially unchanged in the case of the )

B
\ h \ 1.0

model, these otherwise subdominant e†ects are more
obvious in Figure 16b.

Di†erences in the power spectra are rather small in absol-
ute terms, so Figure 16 plots the relative di†erence. We have
shown this for our two chosen models, one being standard
cold dark matter (a), which we will refer to as sCDM, and
the other being an extreme baryon-only model (b). These
models are meant to be representative only, and changes in
cosmological parameters will result in curves that di†er in
detail. We describe how to calculate an approximately
correct recombination history for arbitrary models in a
separate paper (Seager et al. 1999). Since the main e†ect is
similar to an overall amplitude change, we normalized our
CMB power spectra to have the same large-scale matter
power spectrum, which is equivalent to normalizing to the
same amplitude for the initial conditions. The amplitude of
the e†ect of our new H calculation clearly depends on the
cosmology. For the and h case, the freeze-out valuehigh-)

Bof is much smaller (around 10~5), and since the fractionalx
echange in is similarly D10%, the absolute change inx

eionization fraction is much lower than for the sCDM
model. The integrated optical depth is directly proportional
to which is small, despite the increase in and h.)

B
h*x

e
, )

BHence, we see a much smaller increase from our hydrogen
improvement in Figure 16b. The normalization change is
rather difficult to see since it is masked by relatively small
changes around the power spectrum peaks, giving wiggles
in the di†erence spectrum.

The dashed lines in Figure 16 show the e†ect on the
power spectrum for CMB polarization. In standard models
polarization is typically at the level of a few percent of the
anisotropy signal and so will be difficult to measure in detail

(see Hu & White 1997b for a discussion of CMB
polarization). We show the results here to indicate that
there are further observational consequences of our
improved recombination calculation (explicitly, we have
plotted the ““ E ÏÏ mode of polarization ; see, e.g., Seljak 1997).
The e†ect of our improvements on the polarization can be
understood similarly through the visibility function. Since
the polarization power spectrum tends to have sharper
acoustic peaks, the wiggles in the di†erence spectrum are
more pronounced than for the temperature anisotropies.
Note that the large relative di†erences at low l are actually
very small in absolute terms since the polarization signal is
so small there. The polarization-temperature correlation
power spectrum and the ““ B ÏÏ mode of polarization (for
models with gravity waves) could also be plotted, but little
extra insight is gained, and so we avoid this for the sake of
clarity.

The other major di†erence we Ðnd compared with pre-
vious treatments is in the delayed recombination of He I. In
Figure 17, we show the e†ect of our new He I calculation,
again as a fractional change in the CMB anisotropy power
spectrum versus multipole l. The change in the recombi-
nation of He I a†ects the density of free electrons just before
hydrogen recombination, which in turn a†ects the di†usion
of the photons and baryons and hence the damping scale
for the acoustic oscillations that give rise to the peaks in the
power spectrum. The phases of the acoustic oscillations will
also be a†ected somewhat, which shows up in the wiggles in
the di†erence spectrum. For CDM-like models, the main
e†ect is the change in the damping scale, since we now think
there are more free electrons at zD 1500È2000. The
resulting change in the is essentially the same asC

lassuming the wrong angular scale for the damping of the
anisotropies (see Hu & White 1997a), which is the same
physical e†ect that HSSW95 found in arguing for the need
to include He I recombination at all for obtaining percent
accuracy in the The e†ect of this improved He I on theC

l
.
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FIG. 17.ÈE†ect of the improved treatment of helium on the CMB power spectra for (a) the standard CDM model, and (b) the extreme baryonic model (for
which there is essentially no change). The fractional di†erence plotted is between our new helium recombination calculation and the assumption that helium
follows Saha equilibrium (as in HSSW95), with the same ““ e†ective three-level ÏÏ hydrogen recombination used in both cases. Again the sense is C

l
new [ C

l
old ,

solid lines are temperature, and dashed lines are polarization.

power spectrum will depend on the background cosmology
through the baryon density and the horizon size at(P)

B
h2)

last scattering through hence there is no simple Ðtting)0h2 ;
formula, and it is necessary to calculate the e†ect on the
anisotropy damping tail for each cosmological model con-
sidered.

There are really two parts to the He I e†ect. First of all,
the extra makes the tight coupling regime tighter, so thatx

ethe photon mean free path is shorter and the length scale for
di†usion is smaller. Second, the e†ective damping scale
comes from an average over the visibility function, so an
increase in the high-z tail also leads to a smaller damping
scale. The CMB anisotropies can be thought of as a series
of acoustic peaks multiplied by a roughly exponential
damping envelope, with the characteristic multipole of the

cuto† being determined by the damping length scale. As a
result of this smaller damping scale, the high-l part of the
power spectrum is less suppressed, and so we see an increase
in Figure 17a toward high l. For the model (Fig.)

B
\ h \ 1

17b), we see only a very small e†ect at the highest lÏs. This is
easily understood by examining Figure 10, where we see
that He I recombination is pushed back to higher redshifts
than for the sCDM case and also that H recombination
happens earlier, which, together with the higher and h,)

Bshifts the peak of the visibility function to lower redshifts
relative to the recombination curve. Hence, the high-z tail of
the visibility function is much less a†ected in this case, and
our improved He I calculation has essentially negligible
e†ect. However, for less extreme models we Ðnd that the
He I e†ect is always at least marginally signiÐcant.

FIG. 18.ÈThe total e†ect of our improvements on the CMB power spectra for (a) the standard CDM model and (b) an extreme baryonic model. These
plots are essentially the sum of the separate e†ects of hydrogen and helium.



No. 2, 2000 HOW DID UNIVERSE BECOME NEUTRAL? 429

Taking the two main e†ects together, for the sCDM
model, we Ðnd that they have essentially the same sign, so
that the total e†ect of our new calculation is more dramatic
(see Fig. 18a). Both e†ects lead to a slight increase in the
anisotropies, particularly at small angular scales (high l).
Although the exact details will depend on the underlying
cosmological model, we see the same general trend for most
of the parameters that we have considered. The change can
be higher than 5% for the smallest scales, although it should
be remembered that the absolute amplitude of the aniso-
tropies at such scales is actually quite low. Nevertheless,
changes of this size are well above the level that is relevant
for future determinations of the power spectrum. As a rough
measure, the cosmic variance at lD 1000 is about 3%.
Hence, a 1% change over a range of say 1000 multipoles is
something like a 10 p e†ect for a cosmic variance limited
experiment. What we can see is that although the e†ects are
far from astonishing, they are at a level that is potentially
measurable. Hence our improvements are signiÐcant in
terms of using future CMB data sets to infer the values of
cosmological parameters ; if not properly taken into
account, these subtle e†ects in the atomic physics of hydro-
gen and helium might introduce biases in the determination
of fundamental parameters.

3.8. Spectral Distortions to the CMB
With the model described in this paper we plan to calcu-

late spectral distortions to the blackbody radiation of the
CMB today (see also Dubrovich 1975 ; Lyubarsky &
Sunyaev 1983 ; Fahr & Loch 1991 ; DellÏAntonio & Rybicki
1993 ; Burdyuzha & Chekmezov 1994 ; Dubrovich & Stoly-
arov 1995, 1997 ; Boschan & Biltzinger 1998). The main
emission from Lya and the two-photon process will be in
the far-infrared part of the spectrum. Transitions among the
very high energy levels, which have very small energy
separations, may produce spectral distortions in the radio.
Although far weaker than distortions by the lower Lyman
lines, they will be in a spectral region less contaminated by
background sources.

Detecting such distortions will not be easy since they are
generally swamped by Galactic infrared or radio emission
and other foregrounds. Our new calculation does not yield
any vast improvement in the prospects for detection.
However, conÐrmation of the presence of these recombi-
nation lines would be a deÐnitive piece of supporting evi-
dence for the whole big bang paradigm. Moreover, detailed
measurement of the lines, if ever possible to carry out,
would be a direct diagnostic of the recombination process.
For these reasons, we will present spectral results elsewhere.

4. CONCLUSIONS

One point we would like to stress is that our detailed
calculation agrees very well with the results of the e†ective
three-level atom. This underscores the tremendous achieve-
ment of Peebles, Zeldovich, and colleagues in so fully
understanding cosmic recombination 30 years ago.
However, the great goal of modern cosmology is to deter-

mine the cosmological parameters to an unprecedented
level of precision, and in order to do so it is now necessary
to understand very basic things, like recombination, much
more accurately.

We have shown that improvements upon previous
recombination calculations result in a roughly 10% change
in at low redshift for most cosmological models, plus ax

esubstantial delay in He I recombination, resulting in a few
percent change in the CMB power spectrum at small
angular scales. SpeciÐcally, the low-redshift di†erence in x

eis due to the H excited statesÏ departure from an equilibrium
distribution. This, in turn, comes from the level-by-level
treatment of a 300-level H atom, which includes all bound-
bound radiative rates, and which allows feedback of the
disequilibrium of the excited states on the recombination
process. The large improvement in during He I recombi-x

enation comes from the correct treatment of the atomic
levels, including triplet and singlet states. While it was
already understood that He I recombination would a†ect
the power spectrum at high multipoles (HSSW95), our
improved He I recombination a†ects even the start of H
recombination for traditional models. There is thuslow-)

Ba substantially bigger change in the reaching to largerC
l
,

angular scales.
Careful use of rather than can also have noticeableT

M
T
Rconsequences, as to a lesser extent can the treatment of Lya

redshifting using the Sobolev escape probability. Our other
new contributions to the recombination calculation
produce negligible di†erences in Collisional excitationx

e
.

and ionization for H, He I, and He II are of little importance.
Inclusion of additional cooling and heating terms in the
evolution of also produce little change in The largestT

M
x
e
.

secondary spectral distortions do not feed back on the
recombination process to a level greater than 0.01% in x

e
.

Finally, the H chemistry occurs too low in redshift to make
any noticeable di†erence in the CMB power spectrum.

Although we have tried to be careful to consider every
process we can think of, it is certainly possible that other
subtle e†ects remain to be uncovered. We hope that we do
not have to wait another 30 years for the next piece of
substantial progress in understanding how the universe
became neutral.
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APPENDIX

For reaction rates and cross sections see Table 1. Where cross sections are listed instead of reaction rates, we calculate the
reaction rate through the integrals for photoionization (or photodissociation) and recombination, as described in ° 2.3.1.
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TABLE 1

REACTION RATES AND CROSS SECTIONS

Rate CoefÐcient
Reaction (cm3 s~1) Reference

H~ ]H ] H2] e~ . . . . . . . . . . 1.30] 10~9 1
H2] e~ ] H~ ]H . . . . . . . . . . 2.70] 10~8T

M
~3@2 exp ([43000/T

M
) 2

H2` ] H ] H2] H` . . . . . . . . . 6.40] 10~10 3
H2] H` ]H2` ] H . . . . . . . . . 2.4 ] 10~9 exp ([21,200/T

M
) 4

H ] H2] H ] H ] H . . . . . . . 1.0] 10~10 exp ([52,000/T
M

) 5
H2] e~ ] H ] H ] e~ . . . . . . 2.0] 10~9(T

M
/300)0.5 exp ([116,300/T

M
) 6

H2` ] c% H ] H` . . . . . . . . . . . . See expression in reference. 4
H~ ] c% H ] e~ . . . . . . . . . . . . . See table in reference. 7
H ] c% H`] e~ . . . . . . . . . . . . . See ° 3.4
He] c% He`] e~ . . . . . . . . . . See ° 3.4
He` ] c% He`` ] e~ . . . . . . . See ° 3.4

NOTE.ÈThe last Ðve entries refer to cross sections.
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