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ABSTRACT

Future high-precision photometric measurements of transiting extrasolar planets promise to tell us much
about the characteristics of these systems. We examine how atmospheric lensing and (projected) planet
oblateness/ellipticity modify transit light curves. The large density gradients expected in planet atmospheres
can offset the unfavorably large observer lens–to–source lens distance ratio and allow the existence of caus-
tics. Under such conditions of strong lensing, which we quantify with an analytic expression, starlight from
all points in the planet’s shadow is refracted into view, producing a characteristic slowing down of the dim-
ming at ingress (vice versa for egress). A search over several parameters, such as the limb-darkening profile,
the planet radius, the transit speed, and the transit geometry, cannot produce a nonlensed transit light curve
that can mimic a lensed light curve. The fractional change in the diminution of starlight is approximately the
ratio of atmospheric scale height to planet radius, expected to be 1% or less. The lensing signal varies strongly
with wavelength—caustics are hidden at wave bands where absorption and scattering are strong. Planet
oblateness induces an asymmetry to the transit light curve about the point of minimum flux, which varies
with the planet orientation with respect to the direction of motion. The fractional asymmetry is at the level of
0.5% for a projected oblateness of 10%, independent of whether or not lensing is important. For favorable
ratios of planet radius to stellar radius (i.e., gas giant planets), the above effects are potentially observable
with future space-based missions. Such measurements could constrain the planet shape and its atmospheric
scale height, density, and refractive coefficient, providing information on its rotation, temperature, and com-
position. We have examined a large range of planetary system parameter space including the planetary scale
height and orbital distance. For HD 209458b, the only currently known transiting extrasolar planet, caustics
are absent because of the very small lens-source separation (and a large scale height caused by a high tempera-
ture from the small separation). Its oblateness is also expected to be small because of the tidal locking of its
rotation to orbital motion. Finally, we provide estimates of other variations to transit light curves that could
be of comparable importance—including rings, satellites, stellar oscillations, star spots, and weather.

Subject headings: gravitational lensing — planetary systems — stars: atmospheres

1. INTRODUCTION

The exciting discovery of the transit of HD 209458 (Char-
bonneau et al. 2000a; Henry et al. 2000; Jha et al. 2000)
allowed the first direct measurement of the physical proper-
ties of an extrasolar planet, including its radius, and
together with radial velocity measurements, its absolute
mass and average density. Photometric follow-up of radial
velocity planet candidates and future ground- and space-
based surveys are expected to discover hundreds more tran-
siting planets. Planned or proposed space-based missions,
in particular MOST, MONS, COROT, the Eddington Tele-
scope, and the Kepler Mission, are expected to be able to
detect flux variations at the 10�5 level. RecentHubble Space
Telescope observations of the HD 209458b transit (Brown
et al. 2001), with an accuracy of 10�4, illustrate the capabil-
ity of high-precision space-based photometry. With the
anticipated large number of transiting planets and the high
accuracy with which they can be monitored, it is important
to explore small variations in the transit light curve that
might be detectable and allow us to deduce further proper-
ties of the transiting planets.

In this paper we focus on how atmospheric refraction,
which we also refer to as atmospheric lensing, or lensing for
short, modifies the transit light curve. We treat the general
case of an ellipsoidal planet, and the same calculation also
allows us to examine the effects of (projected) planet oblate-
ness/ellipticity, regardless of whether or not lensing is
important. We examine under what conditions atmospheric
lensing and oblateness signatures might be significant,
detectable, and distinguishable from other effects.

We develop the lensing formalism in x 2 and contrast at-
mospheric lensing with gravitational lensing. For readers
with a background in the latter, we point out several places
where intuition gained from gravitational lensing fails for
atmospheric lensing. In x 3 we give a complete list of all the
parameters employed in our model. The condition under
which atmospheric lensing produces strong lensing (i.e.,
existence of caustics) is taken up in x 4. An analytic expres-
sion describing this condition is given. We emphasize the
connections between atmospheric lensing by extrasolar
planets and atmospheric lensing by solar system bodies dur-
ing their occultations of distant stars; the latter has long
been observed (see, e.g., Elliot & Olkin 1996; Hubbard 1997
and references therein). The difference is that in the extraso-
lar case, the lens-source distance is much smaller than the
lens-observer distance and the source is extended compared
to the lens, while the opposite is true in the solar system case.
In x 5.1 we examine how the lensing modifications to the

1 Department of Physics, Columbia University, 538 West 120th Street,
NewYork, NY 10027.

2 Institute for Advanced Study, School of Natural Sciences, Einstein
Drive, Princeton, NJ 08540; lhui@astro.columbia.edu, seager@ias.edu.

The Astrophysical Journal, 572:540–555, 2002 June 10

# 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

540



light curve vary with the model parameters. In x 5.2 we
address the following question: to what extent can a lensed
light curve be confused with a nonlensed light curve with
different parameters? Similarly, in x 5.3 we isolate character-
istic modifications by the planet’s oblateness to the transit
light curve. The issue of how absorption affects the color
dependence of lensing is taken up in x 6, where we also dis-
cuss how lensing impacts the planet transmission spectrum.
Finally, we conclude in x 7 with a summary and with a list of
other effects that might be of comparable magnitude to the
lensing and oblateness signatures.

An interesting paper by Hubbard et al. (2001) recently
appeared as our paper was nearing completion. They dis-
cussed some of the same issues addressed here but focused
mainly on detailed predictions for the case of HD 209458b.
They also presented calculations of atmospheric glow from
Rayleigh scattering, which we do not treat in this paper,
although we do discuss extinction by Rayleigh scattering.

2. THE LENSING MODEL

2.1. Formalism

Much of the formalism presented here closely parallels
that used for gravitational lensing, and the similarities and
differences are discussed in x 2.2. Equivalent techniques
have been applied to lensing of distant stars by solar system
bodies (Elliot & Olkin 1996; see also Draine 1998 for a treat-
ment of gaseous lensing by large spherical clouds). Ray
optics provide the following starting point for lensing:

hS ¼ hI þ hD
DLS

DOL þDLS
; ð1Þ

where hD is the angle of deflection, hS and hI are the source
and image positions, respectively, DLS denotes the distance
between the lens and the source, and DOL is the separation
between the lens and the observer (a schematic ray-tracing
diagram is given in Fig. 1). The angle of deflection is deter-

mined by spatial gradient of the refractive index n:

hD ¼ �
X D

n� Dl � l̂l ; ð2Þ

where the sum is over individual segments of the ray Dl with
l̂l as the unit vector and

D

the spatial gradient.
For atmospheric lensing, n ¼ 1þ ��, where � is the gas

density and � is a refractive coefficient that depends on both
gas composition and wavelength. A common parametriza-
tion, known as Cauchy’s formula, gives �� ¼
A1ð1þ B1=�2Þ, where � is the wavelength and A1 and B1 for
common gases are given in Table 1 (Born & Wolf 1999,
p. 101). For an H2-He mixture with 24% He by mass,
� ¼ 1:243 cm3 g�1 at 4400 Å, and � ¼ 1:214 cm3 g�1 at
6700 Å.

We are interested in cases in which the deflection angle is
small and the lens is thin (i.e., distances over which signifi-
cant deflection occurs are small compared to DLS and DOL).
Suppose the axis connecting the observer and (the center of)
the lens points in the z-direction.We have

hD ¼

D

?

Z 1

�1
n dz ¼

D

?

Z 1

�1
�� dz ; ð3Þ

where

D

? is the spatial gradient in the x- and y-directions.
We use b ¼ ðb1; b2Þ to denote the impact vector—the vector
in the (x, y)-plane from the lens center to the point of
impact.

The inverse of the magnification matrix is

A�1
ij � @�iS

@�
j
I

¼ �ij þ
DOLDLS

DOL þDLS

@2

@bj@bi

Z 1

�1
�� dz ; ð4Þ

where we have used b ¼ DOLhI .
We are interested in a density profile �, which is ellipsoi-

dal in general, in the sense that � ¼ �ðrÞ, where
r2 ¼ x02=a21 þ y02=a22 þ z02=a23.

3 The axes denoted by x0, y0,
and z0 are generally not lined up with the x-, y-, and z-axes
defined before. We show the following in Appendix A:

1. That such a profile is well motivated.
2. That in the simple case of an isothermal atmosphere

in hydrostatic equilibrium, the density profile is �ðrÞ ¼
�0 exp½�ðr� R0Þ=H�, where R0 is a reference radius whose

Fig. 1.—Schematic ray-tracing diagram; the solid line joining O
(observer), L (lens), and S (source) represents the light ray. L represents the
point of closest approach in the transiting planet’s atmosphere. S represents
a point on the surface of the star. The deflection is exaggerated, and the dia-
gram is not to scale. We use the convention that hD has an opposite sign to
hI and hS .

3 A spherical planet is simply a special case within the class of models we
study here.

TABLE 1

Refractive Coefficients for Different Gas Compositions

Gas Composition

A1

(�105 cm3)

B1

(�1011 cm�2)

Hydrogen............................. 13.6 7.7

Oxygen ................................ 26.63 5.07

Nitrogen .............................. 29.19 7.7

Air ....................................... 28.79 5.67

Methane .............................. 42.6 14.41

Note.—Refractive index is n ¼ 1þ ��, with �� ¼
A1ð1þ B1=�2Þ. Values are given for gases at 15�C and 1 atm of
pressure.
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choice will be fixed below, �0 is the density at R0, and
H ¼ ðkBT=glmHÞ is the atmospheric scale height, where kB
is Boltzmann’s constant, T is the temperature, g the surface
gravity, l the mean molecular weight, and mH the mass of
the hydrogen atom.
3. The quantity r, which we loosely refer to as ‘‘ radius,’’

can be written as r ¼ ð1� �Þb21 þ ð1þ �Þb22 þ z2
� �1=2

by a
suitable rotation of axes along with rescaling of the density
field—as long as the deviation from spherical symmetry is
small (�5 1) or a1, a2, and a3 are not too different from each
other. The projected oblateness � is related to the actual
oblateness of the planet �A � ða1 � a3Þ=a1 (assuming that it
is axially symmetric with a1 ¼ a2) by � ¼ �Að1� cos2 �Þ,
where � is an Euler rotation angle;4 � is the angle between
the axis of rotation of the planet and the line of sight (see
Appendix A for details). Assuming that � is randomly dis-
tributed implies that � ¼ �A=2 on average.

We also work under the simplification that �, the density-
independent refractive coefficient, is independent of posi-
tion on the planet. This is a simplification because the atmo-
spheric composition—hence the net value of �—is expected
to vary with atmospheric depth.

Putting the above together and using

D

?�ðrÞ ¼
ð1� �Þðb=rÞ@�=@r (upper/lower sign for b1=b2) in equation
(2), the lensing equation (1) can be written as

�1S ¼ �1I þ ð1� �Þ�1I ðuÞ; �2S ¼ �2I þ ð1þ �Þ�2I ðuÞ ; ð5Þ

where

 ðuÞ � �
DLSDOL

DOL þDLS

Z 1

�1

@�

@r

dz

r
;

� ¼ �0 exp
�ðr� R0Þ

H
;

r2 ¼ D2
OLu

2 þ z2 ;

u2 � ð1� �Þ �1I
� �2þð1þ �Þ �2I

� �2
:

With the above form, the problem of predicting image posi-
tion(s) given a source position can be reduced to solving a
simple single variable equation—this and associated com-
putational tricks are discussed in Appendix B.

The magnification is given by (eq. [4]):

A � detAij ¼
h
1þ 2 þ 1� �2

� �
 2 þ 1� �2

� �
u2 ~  

þ u2 þ �v
� �

~  
i�1

; ð6Þ

where

v � �ð1� �Þ �1I
� �2þð1þ �Þ �2I

� �2
;

u2 � ð1� �Þ �1I
� �2þð1þ �Þ �2I

� �2
;

~  ðuÞ � 1

u

@ 

@u
¼ �D2

OL

DOLDLS

DOL þDLS

Z 1

�1

1

r2
@2�

@r2
� 1

r3
@�

@r

� �
dz ;

and where u,  , and � are as described in equation (5). The
caustic is defined by source positions where A diverges. The
critical curve is the image of the caustic. We discuss in
Appendix B how to find both, if they exist—a situation
referred to as strong lensing.

Finally, the observed flux from a star during an extrasolar
planet transit is given by

FðtÞ ¼
Z

d2�S
X

AI hS � h�ðtÞ½ �WðhIÞ ; ð7Þ

where I hS � h�ðtÞ½ � is the surface brightness of the star as a
function of source position. The symbol h�ðtÞ denotes the
position of the star’s center as a function of time. We have
chosen the origin of hS and hI to be centered at the planet.
The sum is over all images for a given source position. The
kernel WðhI Þ describes the occultation and absorption; in
this paper, we focus on a simple model in which WðhI Þ is a
step function,

WðhIÞ ¼
1 ; if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ �1I

� �2þð1þ �Þ �2I
� �2q

>
R0

DOL
;

0 ; otherwise:

8<
: ð8Þ

This step function specifies R0. It is the (elliptic) radius
below which the projected density exceeds some value such
that the atmosphere becomes completely opaque or it is the
radius at the rocky surface of a planet. A more realistic
treatment of absorption will have W changing more gradu-
ally than this step function and also changing with wave-
length; this will be discussed in x 6. As we will see, our step
function model is actually a good approximation to reality.
Note that both I and A above are functions of wavelength.
Finally, for most purposes, we are only interested in the nor-
malized F(t), i.e., F(t) (eq. [7]) divided by its asymptotic
value well away from the transit—the stellar flux:R
d2�SIðhSÞ. From now on we use F(t) to refer to the nor-

malized value, and whenever we refer to ‘‘ flux ’’ in this
paper, we always mean the stellar flux normalized by its pre-
or posttransit value.

To summarize, equations (5), (6), and (7) completely
specify the problem of atmospheric lensing during a plane-
tary transit for an isothermal atmosphere in hydrostatic
equilibrium with an ellipsoidal density profile.

2.2. Atmospheric versus Gravitational Lensing

Gravitational lensing can be described by essentially the
same equations presented above except that the refractive
index n in equation (3) is equal to 1� 2�, where � is the
gravitational potential instead of 1þ ��. That � is wave-
length-dependent implies that atmospheric lensing is color-
dependent, whereas gravitational lensing is achromatic.

Similarly, gravitational lensing by an elliptic potential
obeys equations (5), (6), and (7) with �� replaced by�2�. It
is interesting to note, however, that a well-known theorem
in gravitational lensing, the magnification theorem, does
not hold in atmospheric lensing. The magnification theorem
states that for a given source position, the magnification of
all images must sum to at least unity. This can be traced
back to the fact that r2� is proportional to the mass den-
sity, which is positive definite. For atmospheric density, the
relevant quantity r2� is not guaranteed to be positive defi-
nite. In other words, in atmospheric lensing the magnifica-
tion need not sum to unity, and thus a net suppression of
flux can occur.

Another important difference between gravitational and
atmospheric lensing is that gravitational lensing is almost
never significant when the lens is very close to the source or
the observer. This arises from the fact that the combination

4 In this paper, we use the terms oblateness and ellipticity
interchangeably.
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of distances DLSDOL=ðDOL þDLSÞ becomes small (domi-
nated by the smaller of the two distances) if DLS5DOL or
DOL5DLS. While the same factor applies to both types of
lensing, atmospheric lensing has the advantage of having
available an exponential density field (or nearly so; see
Appendix A). The analog for gravitational lensing, an expo-
nential potential, almost never occurs in nature; power-law
falloff is far more prevalent. An exponential density profile
allows large gradients to offset an unfavorable combination
of distances. To be more precise, while a power-law profile
would result in factors of DLSDOL=½ðDOL þDLSÞR0� in the
relevant expressions [e.g.,  (u) in eq. (5)], an exponential
profile gives DLSDOL=½ðDOL þDLSÞH�, which is consider-
ably larger (because atmospheric scale height H5R0,
where R0 is the planet radius). Nature offers a nice existence
proof: atmospheric lensing of distant stars by the solar sys-
tem planets has been observed in spite of the fact that
DOL5DLS (see x 4.3). The extrasolar case we are interested
in can be viewed as the symmetrical opposite with
DLS5DOL.

3. PARAMETER ACCOUNTING

Several parameters enter into the problem of planetary
atmospheric refraction during a transit. However, most of
them appear in a few combinations. It is helpful to list them
explicitly.

The quantities  (u) and u2 ~  ðuÞ in the lens mapping equa-
tion (5) can be well approximated by the following expres-
sions if uDOL=H41. This is true in realistic cases because
uDOL is constrained to be larger than R0 in order for an
image not to be obscured (occulted or absorbed) by the
planet.

 ðuÞ ¼ � B
ffiffiffiffiffiffiffiffi
	=2

p uDOL

H

� ��1=2

exp � uDOL � R0

H

� 	
;

u2 ~  ðuÞ ¼ B
ffiffiffiffiffiffiffiffi
	=2

p
ðuDOL=HÞ1=2 1þ uDOL

H

� ��1
" #

� exp �ðuDOL � R0Þ
H

� 	
;

B � 2�
�0
H

DLSDOL

DOL þDLS
: ð9Þ

Note that refraction is important (or the magnification A
is significantly different from unity) only if uDOL is close to
R0. Therefore, as far as the gross lensing behavior (or lack
thereof) is concerned, only three parameters are important,
B as defined above,R0=H, and �.

The parameter R0=H is a measure of the relative impor-
tance of the binding energy and the thermal energy of the at-
mosphere. The quantity B can be understood as the
deflection angle scaled by ratios of distances—to be more
precise, B ¼ 2ðDLS=HÞ½ð2	R0=HÞ1=2��1�D, where hD is the
deflection angle (i.e., ��0 ¼ ½ð2	R0=HÞ1=2��1�D). Note that
DLS is replaced byDOL ifDOL5DLS, such as for the lensing
of distant stars by solar system planets. It is important to
emphasize that �0 here is the density at which the atmo-
sphere starts to become transparent (i.e., optical depth
unity) or, equivalently, hD is the deflection angle at an
impact parameter corresponding to unit optical depth
(see x 6).

In addition to the three lensing parameters, we have three
transit parameters. They are the transit impact parameter
(as opposed to the lensing impact parameter) htr imp (the dis-
tance of closest approach between the center of the planet
and the center of the star in angular units),5 the transit
impact angle 
tr imp (the angle between the major axis of the
projected planetary ellipse and the direction of transit
motion), and the transit velocity w in angular units per unit
time. See Figure 2 for an illustration. Since w basically
rescales the time axis in our prediction of the transit light
curve, we do not treat it as a free parameter in our predic-
tions. We estimate it by using w ¼ GM�=DLSð Þ1=2=DOL.

Finally, there are the parameters that describe the star:
the stellar radius R* and the surface brightness of the star,
or its limb-darkening function, which is often parametrized
as

IðhS � h�Þ ¼ 1� u�ð1� sÞ
� v� 1� s2

� �
if jhS � h�jDOL 	 R� ;

IðhS � h�Þ ¼ 0 otherwise ; ð10Þ

where

s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jhS � h�jDOL

R�

� �2
s

;

and where h� is the angular position of the star’s center
(recall that we have chosen the origin to be at the center of

5 The parameter htr imp is related to the planet orbital inclination i by
�tr imp ¼ ½DLS=DOL� cos i.

Fig. 2.—Geometrical set up of a planetary transit. The circular solid line
represents the boundary of the star, while the ellipsoidal dotted line repre-
sents that of the planet. The filled square is the center of the star, which
moves along the dashed line with respect to the planet. The horizontal dot-
ted line defines the major axis of the planet; 
tr imp is the angle between the
horizontal and dashed line, while htr imp is the distance in angular units of
closest approach between the planet center and the stellar center.
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the lens, the planet). The limb-darkening parameters u� and
v� are generally wavelength-dependent. Typical values are
u� ¼ 0:8 and v� ¼ �0:225 in red bands, u� ¼ 0:99 and
v� ¼ �0:17 in blue bands, and u� ¼ 0:93 and v� ¼ �0:23 in
intermediate yellow bands (Cox 2000). Clearly, as far as the
gross features of the transit are concerned, it is the ratio
R�=R0 that is important, not the absolute size of R� (other
than a rescaling in the overall duration of the transit).

In summary, we have three lensing parameters, �, B, and
R0=H, two transit parameters, htr imp and 
tr imp, and three
stellar parameters,R�=R0, u�, and v�. In the case of a spher-
ical planet, the total number of parameters is reduced by
two because the lensing parameter � and the transit parame-
ter 
tr imp are not needed. We will not perform an exhaustive
study of the full parameter space in this paper but will be
content with a mostly qualitative (with a few exceptions)
description of the dependence of the transit light curve on
these parameters. Some of these parameters are likely
degenerate. For instance, changing htr imp means that the
transit is sampling a different part of the stellar profile,
which might be mimicked by a different limb-darkening law
(e.g., a different u� and v�). Finally, note that for extrasolar
systems, DOL4DLS, and so DOL drops out of the lensing
equation (see, e.g., eq. [5]) and appears only as an unobserv-
able overall scaling of angular separations.

4. STRONG LENSING AND CAUSTIC STRUCTURE

4.1. Condition for Strong Lensing

The first question we would like to address is when strong
lensing—i.e., the existence of caustics or multiple images
(which may be unresolved)—occurs. The existence of caus-
tics could lead to significant modifications in transit light
curves.

Caustics in the source plane, or critical curves in the
image plane, can be obtained by solving for divergent mag-
nification, A�1 ¼ 0 (eq. [6]). In the spherical case, with
� ¼ 0, this is straightforward. Recall that images must have
u > R0=DOL to be visible; otherwise, they are blocked
(occulted or absorbed) by the planet (eq. [8]). Therefore, the
condition for strong atmospheric lensing by a spherical
planet is

1þ 2 ðuÞ þ  ðuÞ2 þ u2 ðuÞ ~  ðuÞ þ u2 ~  ðuÞ
¼ ½1þ  ðuÞ�½1þ  ðuÞ þ u2 ~  ðuÞ� < 0 ;

u ¼ R0

DOL
: ð11Þ

This guarantees that some images with u > R0=DOL will
have A�1 ¼ 0. Using the results in x 3, the above condition
imposes a relation between only two parameters: B and
R0=H.

Since � is small, the condition for strong lensing by an
elliptic atmosphere will not be too different from the spheri-
cal case described above. We estimate it using results proved
in Appendix B (eq. [B5] and the following paragraph),
replacing the above condition with the following

1þ 2 ðuÞ þ ð1� �2Þ ðuÞ2 þ ð1� �2Þu2 ðuÞ ~  ðuÞ
þ ð1� �Þu2 ~  ðuÞ < 0 ;

u ¼ R0

DOL
: ð12Þ

Using equation (9), this imposes a condition on three
parameters, �,B, andR0=H,

1�
ffiffiffi
	

2

r ffiffiffiffiffiffi
H

R0

r
B� � < 0 ; ð13Þ

where we have used H=R05 1 and �5 1. This is a main
result of our paper.

The above condition for strong lensing is depicted in Fig-
ure 3. We show in the same figure the relevant parameters
for several known planets. We assume � ¼ 1:2 cm3 g�1 for
all of them. Mars (M) has R0 
 3400 km,
DOLDLS=ðDOL þDLSÞ 
 1:5 AU, �0 
 1:5� 10�6 g cm�3,
and H 
 8:7 km (Jones 1999 p. 314). Jupiter (J) has
R0 
 71; 000 km, DOLDLS=ðDOL þDLSÞ 
 5:2 AU,
�0 
 3:5� 10�5 g cm�3, and H 
 21:7 km (Jones 1999 p.
341). The extrasolar planet HD 209458b (HD) has R0 
 105

km, DOLDLS=ðDOL þDLSÞ 
 0:05 AU, �0 
 ð1 6Þ � 10�6

g cm�3, and H 
 500 700 km (Charbonneau et al. 2000;
Henry et al. 2000; Mazeh et al. 2000; Jha et al. 2000; Bur-
rows et al. 2000). The density �0 is obtained by computing
the density at which the optical depth for Rayleigh scatter-
ing is unity (at � ¼ 6500 Å; see x 6),6 or in the case of Mars,
�0 is the density at the base of its atmosphere, just above its

Fig. 3.—Separation of the strong lensing regime (existence of caustics)
from the weak lensing regime for the combination of parameters B and
R0=H (delineated by solid and dashed lines). The solid line is for projected
oblateness/ellipticity � ¼ 0:1, and the dashed line is for a sphere, � ¼ 0. The
parameter B is defined as B ¼ 2�ð�0=HÞDLSDOL=ðDOL þDLSÞ (eq. [9]).
The quantityR0=H is the ratio of planet radius to atmospheric scale height.
We show values of B and R0=H for HD 209458b (HD), where DLS5DOL,
and for Mars (M) and Jupiter (J), where DLS4DOL. In all cases, observa-
tions at optical wave bands are assumed. We show with the symbol J0 the
parameters for Jupiter if it were observed at wave bands with 600 times
stronger absorption (e.g., in the UV; see text for details). The filled square
denotes the fiducial model we study in this paper. The triangle, open square,
and cross are other models we also discuss.

6 The amount of absorption assumed here can be regarded as an abso-
lute minimum. Additional absorption due to, for instance, clouds or water
molecules will decrease �0 and therefore B (see Hubbard et al. 2001). The
fact that our assumed (optimistic) B still fails to meet the strong lensing cri-
terion implies that caustics can be safely ignored in the case of HD 209458b.
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solid surface. For a gaseous planet or a rocky planet with a
thick atmosphere, �0 (and R0) is wavelength-dependent. For
example, our own solar system planets have much stronger
molecular absorption in the UV and IR compared to the
optical. Strong absorption bands make �0 smaller (where,
again, �0 is the density andR0 the radius at which the optical
depth equals 1), in some cases to the point where atmospher-
ic lensing is no longer strong (recall that B / �0). This is
illustrated by the point J0, where we show Jupiter observed
at a wave band where the absorption cross section is 600
times larger, e.g., Rayleigh scattering observed at � ¼
1300 Å instead of 6500 Å. The main effect is a dramatic
decrease in B. The increase in R0=H is very small because
the radius varies only logarithmically with the density. We
will discuss the color dependence of lensing in more detail
in x 6.

There is clearly a wide range of possibilities in the two-
dimensional parameter space of B and R0=H. Recall that
B � 2� �0=Hð Þ DLSDOL= DOL þDLSð Þ½ �; thus, B depends on
many parameters of the planetary system. For example, B
depends on the planetary atmosphere throughH, which can
depend strongly on stellar type and orbital distance via heat-
ing, through �0, which is very sensitive to the presence of
optically thick clouds, and through �. J and HD, which
have a similar mass, occupy very different parts of the B ver-
sus R0=H diagram primarily because they are situated at
very different distances from their parent stars. Higher tem-
perature in the latter leads to a much larger atmospheric
scale height. To investigate how variables such as stellar
luminosity, albedo, planet mass, and composition control
the lensing behavior is outside the scope of this paper. In
fact, the radial velocity detections of extrasolar planets have
taught us that planet orbital characteristics can be quite dif-
ferent from expectations based on the solar system. We
therefore adopt the philosophy that the parameters spanned
by three examples (shown by the open square, cross, and tri-
angle in Fig. 3) are all possible and interesting, and our goal
is to understand the importance of atmospheric lensing
under these conditions. We will briefly discuss the physical
motivations for the choice of some parameters in x 7.

4.2. Caustic Structure andMagnification

The lower panel of Figure 4 shows the caustic (solid line)
and the critical curve (dotted line) for a fiducial model with
projected oblateness � ¼ 0:05 denoted by the filled square in
Figure 3 (see x 5 for details). A point source situated within
the caustic produces four images.7

The upper panel of Figure 4 shows the magnification as a
function of source position for a point source situated on
the x-axis. This figure shows that lensing has two effects.
First, it suppresses the flux originating from source posi-
tions just outside R0 (uDOL > R0). Second, it brings in addi-
tional photons from source positions behind R0

(uDOL < R0)—photons that would otherwise be blocked
(occulted or absorbed) by the planet. Which effect domi-
nates can be calculated by integrating over the star

(regarded here as a collection of point sources) and depends
on details of the magnification profile and the limb-
darkening profile (i.e., the lensing parameters, transit
parameters, and stellar parameters described in x 3). We can
derive a simple result from equation (7) for the limiting case
of a completely flat and constant I. Taking I out of the inte-
gral in equation (7), F can be rewritten as I

R
d2�IWðhIÞ,

which is identical to the result if no lensing takes place. It is
not hard to see that the same conclusion follows if I is con-
stant within some region and if the planet is well within this
region. In other words, if there is strictly no limb darkening,
there will be no net gain or loss of stellar flux from atmo-
spheric lensing, provided that the projected planet is well
within the stellar disk.

Realistic stellar profiles are never exactly constant.
Refraction therefore generally modifies the dimming or defi-
cit of the stellar flux during a transit, especially during
ingress and egress. The sign of the modification depends on
the exact transit and lensing parameters. The size of the
modification can be crudely estimated from the ratio of the
projected area of the atmosphere to that of the planet:

H=R0 if strong lensing occurs.

4.3. Application to Solar System Occultations

Figure 4 also represents an occultation of a point-source
background star by a solar system planet. The dotted line
shows what one would expect for an atmosphereless planet
(ignoring diffraction): the stellar intensity is constant and
vanishes instantaneously when the star passes behind the
planet as viewed by the observer. The dashed line shows the
magnification from equation (6) when refraction by the at-

Fig. 4.—Top: Magnification as a function of source position for source
positions (dashed line; overlaps with solid line in the upper portion) that lie
on the major axis of the planet (the x-axis in the lower panel.) The dotted
line shows the occultation kernelW as defined in eq. (8). The solid line rep-
resents the light curve for an occultation by a solar system planet of a dis-
tant star, which happens to be moving along the planet’s semimajor axis.
See text for details. Bottom: Caustic, source positions where the magnifica-
tion diverges (solid line), while the dotted line shows the critical curve,
which is the image of the caustic. The four filled squares are images of a
point source denoted by an open square situated just inside the caustic. The
axis coordinates are distances (in kilometers) in the lens plane; i.e., they cor-
respond to physical distances from the planet center.

7 It is interesting to note that lensing by an elliptic potential or density
profile generally produces two sets of caustic curves (see, e.g., Schneider et
al. 1992), whereas we see only one here. The origin can be traced to the fact
that  (u) in eq. (5), which is proportional to the deflection angle, is mono-
tonic. We do not expect small local deviations from the exponential density
profile to change this conclusion because  (u) involves an integral over
many layers of the atmosphere.
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mosphere is significant. The magnification curve can be
understood qualitatively as follows: (1) The diminution of
starlight during ingress and egress is due to atmospheric dif-
ferential refraction (not by absorption that occurs at much
lower depths in this model), which causes stellar light rays
to diverge away from the planet-observer line of sight. This
is a consequence of the radial density gradient in the atmo-
sphere. (2) When the star is behind the opaque part of the
planet, the occultation light curve is not zero because some
of the stellar light rays are refracted into the observer’s line
of sight. (3)When the point source is near the geometric cen-
ter of the planet, the stellar flux is symmetrically refractively
focused, causing an increase in brightness. The solid line in
Figure 4 shows the occultation light curve that includes the
flux from the planet from reflected sunlight if the occulted
star has an intensity 20% of the planet. The solid curve
shows that the planet’s reflected light dominates the light
curve during the stellar occultation. Hence the minimum
observed brightness corresponds to the planet alone, and
the full extent of refractive focusing and defocusing is not
observed for bright solar system planet occultations of
background stars. The magnification peaks have been
observed for most solar system planets (and with the multi-
ple images even resolved in the case of Saturn; see Nichol-
son, McGhee, & French 1995). Note that the magnification
peaks are generally reduced because of atmospheric absorp-
tion or scattering and to the finite size of the star. Note also
that if the star does not move along the axes of symmetry of
the solar system planet, the two magnification peaks will
generally be of different heights and widths. Also, the two
peaks will merge into one if the planet’s oblateness is suffi-
ciently small. Refractive occultations of all of the solar sys-
tem planets (except Mercury) have been observed and in
some cases well studied (see Elliot &Olkin 1996 and referen-
ces therein). Models of them can provide temperature (T),
pressure (P), and density (�) as a function of atmospheric
depth.

5. THE TRANSIT LIGHT CURVE

5.1. Exploring the R0=H-BPlane

Figure 5 shows the transit light curve with or without
lensing for a fiducial model denoted by the filled square in
Figure 3: B ¼ 40:3, R0=H ¼ 117:3, and � ¼ 0:05, together
with R0=R� ¼ 0:084, R�= GM�=DLSð Þ1=2¼ 233:66 minutes,
u� ¼ 0:8, v� ¼ �0:225, �tr imp ¼ 2R0=DOL, and 
tr imp ¼ 45�.
Because B depends on several parameters including plane-
tary scale height and orbital distance, the fiducial model can
be realized by several different kinds of planetary systems
(e.g., different star types and orbital distances). Although
the fiducial model is not intended to represent any planet in
particular, a physical realization of the fiducial model is
described in x 7. The last six parameters define the overall
light deficit and rough duration of transit, the limb-darken-
ing profile, and the geometry of the transit. We emphasize
that a different value for R�= GM�=DLSð Þ1=2 (x 3) can be
easily accommodated by rescaling the time axis of all light
curves shown below.

To better isolate the effect of lensing, we define and show
in Figure 6 the following quantity (solid line):

f ðtÞ ¼ DFlensðtÞ � DFno lensðtÞ
DFmax

lens

; ð14Þ

where DFðtÞ � 1� FðtÞ represents the light deficit and the
subscripts denote whether or not lensing is taken into
account (with all other parameters fixed). We choose to nor-
malize by the maximum deficit, which can be estimated

Fig. 5.—Transit light curve for our fiducial model (denoted by a filled
square in Fig. 3) with atmospheric lensing (solid curve) and without (dashed
curve). F(t) is the normalized stellar flux (eq. [7]). The star here has
R� ¼ 0:6R�.

Fig. 6.—Fractional difference between the flux deficit from a stellar light
curve, f (t), with and without planetary atmospheric lensing (solid line; eq.
[14]). This is for the fiducial model denoted by the filled square in Fig. 3.
The dotted line shows ~ff ðtÞ as defined in eq. (15), the fractional difference
between the light deficit from a lensed fiducial model and an unlensed
model with parameters of the unlensed model tuned to minimize this frac-
tional difference: R0 ¼ 35; 400 km, H ¼ 300 km, R� ¼ 417; 600 km,
u� ¼ 0:832, v� ¼ �0:2475, �0 ¼ 1:68� 10�5, � ¼ 0:05, w ¼ 2:9741� 10�13

s�1, 
tr imp ¼ 49=5, and �tr imp ¼ 69; 696 km=DOL.
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roughly by ðR0=R�Þ2.8 The quantity f is therefore a frac-
tional difference. This gives us a nice way to estimate the ab-
solute size of the deficit for a transit with any givenR0=R�: it
is roughly ðR0=R�Þ2ð1þ f Þ. As we have discussed in x 4, f
can be estimated by 
H=R0, which is around 1% for our
fiducial model. This is in rough agreement with the results
of our numerical integration. The absolute change in flux
due to lensing is therefore 1%� ðR0=R�Þ2, which for the
example shown with R0=R� 
 0:1, is 10�4—a potentially
significant effect.

The solid line in Figure 7 shows the same quantity f for a
transiting planet with the same H=R0 but a smaller B
(=14.9)—denoted by an open square in Figure 3. The over-
all magnitude of f is a little smaller but not too dissimilar
from the fiducial model above. The sign of the lensing effect
as the transit progresses, however, is quite different. As we
have previously discussed, two opposing lensing effects are
competing. One is the suppression of flux from source posi-
tions just above R0. The other is the addition of photons
from source positions in the planet’s shadow. For the model
with a larger B, the first dominates over the second effect at
all times. For the model here with a smaller B, the second
effect dominates, at least temporarily toward the end of
ingress or beginning of egress. At midtransit, however, the
first effect still dominates. Interestingly, a search through a
whole range of limb-darkening parameters reveals that lens-
ing almost always causes a net suppression of flux at mid-
transit except when the stellar profile is very spiky at the
center.

When B is decreased further so that caustics no longer
exist, the first effect, suppression of flux, will dominate. This
is illustrated by the dotted line in Figure 7, which is the
model denoted by a cross in Figure 3, and is chosen to

resemble HD 209458b (see x 4.1).9 Clearly, atmospheric
lensing is weak for the close-in extrasolar giant planets like
HD 209458b. This is no surprise since, as we have pointed
out in x 4.1 and Figure 3, there are no caustics in the case of
HD 209458b. This is due to the low B, which is mainly
caused by a small lens-source distance because B is propor-
tional to DLS. A second, less direct effect of the small DLS is
that the planet’s temperature is hotter, and thusH is higher,
further decreasing B. However, it is interesting that even
though the combination of parameters does not allow the
existence of caustics in the case of HD 209458b, refraction
nonetheless could modify the light curve at a (fractional)
level of 
5� 10�4 (depending on the actual atmospheric
structure; see x 7 for details). Note also that because
DLS ¼ 0:05 AU for this close-in gas giant (compared to
DLS ¼ 1 AU we adopt in previous cases), the shorter orbital
radius leads to a higher velocity (the parameter w; see x 3),
hence, a shorter transit. Finally, the dashed line in Figure 7,
f(t), shows the model shown by a triangle in Figure 3. The
behavior is similar to the solid line of Figure 6 except that
the overall effect is weaker. This is due to a larger R0=H,

700, from which one expects f on the order of

1:5� 10�3, in agreement with what we find.

5.2. The Lensing Signal

The previous section shows that lensing can modify the
transit light curve to an extent that is potentially detectable
in some cases. If so, high-precision photometric observa-
tions of extrasolar planet transits can provide planet atmo-
sphere parameters such as scale height and density, both of
which affect the lensing behavior. What is not clear, how-
ever, is whether a transit light curve from a planet with lens-
ing can be distinguished from a transit light curve from a
planet with slightly different parameters but with no lensing.
This is what we investigate here.

As shown in the last section, the modification introduced
by atmospheric lensing is qualitatively quite different for
models with or without caustics. For models with caustics,
such as those shown in Figure 6, f(t) experiences a signifi-
cant dip in the light deficit around ingress and egress (the
same holds for solid and dashed lines in Fig. 7). This dip is
caused by the additional photons brought in from the plan-
et’s shadow because of lensing, which causes the light deficit
to drop temporarily. In other words, the inexorable dim-
ming of starlight at ingress is temporarily slowed down by
the additional photons that are refracted into view. This
effect is much weakened if caustics do not exist, as in the case
of the dotted line in Figure 7, which is our model for HD
209458b. This dip, or slight reduction in the rate of dim-
ming, introduces a distinct shape to the transit light curve
during ingress and egress, which one might hope to observe.

The dotted line in Figure 6 shows the following fractional
difference:

~ff ðtÞ ¼ DFlensðt; PÞ � DFno lens t; P
0ð Þ

DFmax
lens ðPÞ

; ð15Þ

where the extra argument P denotes the whole set of param-

8 We could normalize by the maximum deficit in the nonlensed case, but
it would only modify f (t) to higher order (O½ f ðtÞ2�).

Fig. 7.—The f (t) (eq. [14]) for three different planetary models corre-
sponding to the open square (solid line), cross (dotted line), and triangle
(dashed line) in Fig. 3. Parameters for the dotted line resemble those for HD
209458b.

9 The projected ellipticity is chosen to be 10�3, although its precise mag-
nitude does not affect our conclusions here. The small oblateness is
expected to be due to the tidal locking of rotational and orbital motions
given the proximity of HD 209458b to its companion star (see Seager &Hui
2002a).
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eters that determine the transit characteristics. We use P0 for
the second term (which does not take into account lensing)
to emphasize that the second term has a different set of
parameters from the first term. The question is how small
one can make ~ff by choosing P0 appropriately. If ~ff ðtÞ is too
small to be detectable, then for practical purposes, one can-
not tell from the observed light curve whether or not refrac-
tion plays a role and therefore cannot determine useful
parameters from refraction effects.

The dotted line in Figure 6 shows the result of our effort
of searching for the appropriate DFno lens(t, P

0) that would
minimize ~ff ðtÞ for our fiducial model (filled square in Fig. 3).
We systematically vary a host of parameters, including R0,
u�, v�, w, htr imp, and 
tr imp. The minimum fractional differ-
ence we can come up with is a model that brings ~ff ðtÞ down
to about 10�3 during midtransit but still almost 5� 10�3 at
ingress and egress. It should be emphasized, however, that it
is conceivable that a different limb-darkening law from the
one we have adopted (eq. [10]) could be chosen to further
decrease ~ff . Nonetheless, within the range of simple models
we consider, it appears that the lensing signal (i.e., the caus-
tic signal) cannot be completely masked by a clever choice
of parameters. A discrepancy in ~ff of 5� 10�3 is potentially
observable; this fractional difference of 5� 10�3 means, for
a transit where, say,R2

0=R
2� 
 10�2 the absolute difference in

the light deficit would be
0:5� 10�4. We will discuss other
nonlensing effects that might be of similar magnitude in x 7.

We find that the same conclusion holds for other cases
with caustics, such as those shown as solid and dashed lines
in Figure 7. For cases without caustics, on the other hand,
such as that shown with a dotted line in Figure 7, we find
that a suitable choice of R0 for the second term in equation
(15) is generally sufficient to make ~ff quite small and
undetectable.

The time derivative dF=dt provides another way to illus-
trate the effect of refraction. Figure 8 shows the time deriva-
tive dF=dt for our fiducial model, with (solid line) or without
(dotted line) lensing. The bottom panel focuses on the part
of ingress where dF=dt reaches its minimum value before

increasing. This corresponds roughly to when half of the
planet has crossed the stellar limb.What is interesting is that
the presence of caustics introduces a distinct enhancement
in dF=dt (solid over dotted curve) around t ¼ �230 minutes.
This is due to the additional photons brought about by the
caustic. From Figure 4 we can see that the caustic has a size
of about 0:2R0=DOL. Dividing it by w, the angular velocity,
we obtain 
5 minutes, in rough agreement with the dura-
tion of the enhancement seen in Figure 8. Since the size of
the caustic scales with �, this offers a direct way of measuring
the projected oblateness of the planet. However, it appears
that one needs to be able to detect differences in dF=dt at the
level of at least one part per million per minute, which is
likely difficult to achieve in the near future. Therefore, while
the derivative dF=dt offers an interesting way to look at the
effect of lensing, the integral fractional differences ~ff or f
might be a more practical probe.

5.3. The Oblateness Signal

The projected oblateness or ellipticity of a planet can
affect the transit light curve. Here we explore the fractional
difference

feðtÞ ¼
DFðt; � ¼ 0:1Þ � DFðt; � ¼ 0Þ

DFmaxð� ¼ 0:1Þ ð16Þ

to determine the magnitude of the effect. Here DF can either
have lensing taken into account or not because we would
like to investigate how oblateness affects the light curve irre-
spective of whether or not refraction is present. Figure 9
shows fe for the fiducial model (filled square in Fig. 3). The
solid line denotes a case with lensing and the dotted line
without. It is interesting that oblateness introduces a modifi-
cation to the light curve that is quite similar in the two cases.

Next we pursue the same exercise as before and ask if
parameters P0 can be found such that the following can be

Fig. 8.—The dF=dt for the fiducial model with � ¼ 0:05, denoted by the
filled square in Fig. 3. The lower panel is a magnified version of the upper
one. The solid line is with lensing, and the dotted line is without.

Fig. 9.—Fractional difference between the light deficit from a transit of
an elliptical planet and a spherical planet, fe, for the fiducial model denoted
by the filled square in Fig. 3. The solid line is for a transit with lensing and
the dotted line for a transit without.
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minimized:

~ffeðtÞ ¼
DFðt; � ¼ 0:1; PÞ � DF t; � ¼ 0; P0ð Þ

DFmaxð� ¼ 0:1; PÞ ; ð17Þ

where P denotes the parameters for our fiducial model. Fig-
ure 10 shows the results. We cannot find combinations of
parameters P0 to reduce ~ffe below 10�3 at ingress and egress,
suggesting that we might be able to distinguish light curves
caused by ellipsoidal versus spherical planets. The P0 that
minimizes ~ffe, as shown in Figure 10, turns out to correspond
to a spherical planet with slightly larger R0 and essentially
the same area as the ellipse in the fiducial model. In other
words, the curves in Figure 10 basically show the fractional
difference between the light deficit of a spherical planet and
an oblate planet (� ¼ 0:1) with the same area (with or with-
out lensing). This is a detectable signature.

How large is the lensing signature compared to the
oblateness signature for the same stellar parameters? For
our fiducial planet model, a comparison between Figure 6
and (the dotted line of) Figure 10 shows that the two effects
are of a comparable magnitude. Note, however, the oblate-
ness signature can persist even if the parameters are not
right for strong lensing.

The reader might have noticed that some of the previous
light curves are not symmetric around t ¼ 0 (which is
chosen to be the point of midtransit or minimum flux). This
is due to the fact that the major/minor axis of the planet is
misaligned with the direction of motion (see Fig. 2); i.e.,
only 
tr imp ¼ 0 or 
tr imp ¼ 90� would produce a light curve
that is symmetric around t ¼ 0. In the presence of a general
misalignment, the asymmetry provides another useful diag-
nostic of oblateness because a spherical planet can only pro-

duce symmetric light curves. We show in Figure 11 the
following fractional difference:

fasymðtÞ ¼
DFðtÞ � DFð�tÞ

DFmax
: ð18Þ

The solid line denotes the case for � ¼ 0:1 and the dashed
line for � ¼ 0:05, both for 
tr imp ¼ 45�. The dotted line
shows the same for 
tr imp ¼ 0�, verifying that the asymme-
try vanishes for exact alignment of the major (or minor) axis
with the direction of motion. The lower panel shows fasym(t)
where all quantities are evaluated with lensing, while the
upper panel shows the same without lensing. The sets of
curves are almost identical. This means the degree of asym-
metry in the light curve is determined by the size of the
oblateness and angle 
tr imp alone and is insensitive to
lensing.

6. ABSORPTION AND COLOR DEPENDENCE

6.1. More AccurateModeling of Absorption and Its
Effects on Lensing

So far we have been using a crude step function model of
absorption that turns abruptly on and off at u ¼ R0=DOL.
Here we use absorption to refer to extinction by either
absorption or scattering. Taking into account absorption in
a more realistic way is, in principle, straightforward. For
each image position, there is an associated optical depth:

�ðhIÞ ¼
Z 1

�1
�

�

lmH
dz

¼ �0
lmH

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	uDOLH

p
exp

�ðuDOL � R0Þ
H

; ð19Þ

where u is defined in terms of hI as in equation (6), and we

Fig. 10.—Fractional difference between the light deficit from an elliptical
fiducial model and a spherical model, ~ffe (eq. [17]), with parameters of the
spherical model tuned to minimize this fractional difference. The solid line
is for a model with lensing, and the dotted line is for a model without lens-
ing. The derived parameters of the spherical planet are R0 ¼ 35; 230 km,
u� ¼ 0:8048, and v� ¼ �0:227 for the lensed case (solid line) and
R0 ¼ 35; 270 km and the same u� and v� for the unlensed case (dotted line).
The dotted line is essentially the fractional difference in the light deficit of
an elliptical compared to a spherical planet of a similar total area. See text
for details.

Fig. 11.—Value of fasym as defined in eq. (18) with (bottom) and without
(top) lensing. The solid line is for � ¼ 0:1, the dashed line is for � ¼ 0:05, and
both are for 
tr imp ¼ 45�. The dotted line is for the same � but with

tr imp ¼ 0�. In all cases, the rest of the parameters are those of the fiducial
model (filled square in Fig. 3). If the curves in the upper and lower panels
are plotted together, they almost completely overlap; i.e., light curves with
and without lensing have an almost identical degree of oblateness-induced
asymmetry.
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have used the condition that uDOL=H41. The symbol lmH

denotes the mean molecular weight. To compute the light
curve with absorption, WðhI Þ should be replaced by e��ðhI Þ

in equation (7).
The absorption cross section � can vary significantly

depending on the composition of the planet atmosphere and
the wavelength of interest and is essentially infinite at the
surface of a rocky planet. To demonstrate concretely the
effect of more accurate, gradual absorption, we adopt the
cross section appropriate for Rayleigh scattering (Jackson
1999):

� ¼ 10�27 cm2 5000 G

�

 !4

; ð20Þ

where � is the wavelength of interest.
We recompute predictions for the fiducial model (filled

square in Fig. 3) using the model outlined above. In Figure
12, we show the following fractional difference,

faðtÞ ¼
DFabðtÞ � DFðtÞ

DFmax
ab

; ð21Þ

where DFab(t) represents the deficit computed when a grad-
ual change in absorption is used, while DF(t) denotes the
same computed with a step function approximation for W
(eq. [8]). The upper solid and dotted lines in Figure 12 give
the above quantity with or without lensing. Gradual
absorption produces light curves that are different from a
step function absorption/occultation at about the 1% level.
The above uses the same planet radius R0 for DFab and DF.
This difference can be much diminished, however, if one
chooses an appropriate R0 for the step function model. The
lower solid and dotted lines in Figure 12 are the minimized

fractional difference,

~ffaðtÞ ¼
DFabðt; R0Þ � DF t; R0

0

� �
DFmax

ab ðR0Þ
; ð22Þ

for cases with and without lensing, respectively, where we
tune R0

0 to make ~ffa small. The small value of ~ffaðtÞ in Figure
12 shows that our step function absorption model is actually
a good approximation to reality—a suitable R0 can always
be found such that it approximates a gradual absorption
model to high accuracy. This works primarily because e��

does behave almost like a step function because of the fact
that � and therefore � vary exponentially with radius.

With the above results we can proceed to discuss the color
dependence of a transit light curve. There are three main
factors. First, the stellar profile changes with wavelength,
generally flatter as one considers redder wave bands (see x
3). Second, the refractive coefficient � varies with wave-
length. The variation depends on atmosphere composition,
and some examples are given in Table 1. Third, the absorp-
tion cross section � also varies with wavelength. In fact, for
Rayleigh scattering, for instance (eq. [20]), absorption varies
much more strongly with wavelength compared to both the
index of refraction and limb darkening. This can have a dra-
matic consequence for the existence of caustics. Consider a
model like the open square in the B-R0=H plane as shown in
Figure 3. Recall that B ¼ 2��0=Hð Þ½DOLDLS=ðDOL þDLSÞ�
(eq. [9]). As one considers shorter wavelengths or bluer col-
ors, � becomes larger, increasing the optical depth (eq. [19]).
In our step function model, this is equivalent to lowering �0
(defined to be the density at which � ¼ 1), in other words,
lowering B.10 For sufficiently blue colors, the model would
shift down from the open square in Figure 3 and cross the
strong lensing threshold (solid line), erasing the caustics and
making the lensing signal much weaker (as discussed in
x 5.2). The same also holds true at wave bands where other
kinds of absorption are important, such as molecular
electronic absorption bands in the UV and rotational-
vibrational bands in the IR of species such as H2O, CO2,
and CH4. This is a well-known result for solar system planet
occultations of distant stars where lensing effects are strong
in the optical but nonexistent in the UV and within strong
absorption bands in the IR.

In summary, for extrasolar planet transits where caustics
exist, we expect the lensing signal to disappear or at least
weaken at wave bands with high extinction.

6.2. Planetary Atmosphere Transmission Spectrum and
Stellar Spectrum

Extrasolar planet transit transmission spectra have been
described in several papers for both the close-in extrasolar
giant planets (Seager & Sasselov 2000; Brown 2001; Hub-
bard et al. 2001) and Earth-like planets (Schneider 1994;
Webb & Wormleaton 2001). For parameters with strong
lensing (Fig. 2), the transmission spectrum could be signifi-
cantly affected by atmospheric refraction. At wave bands
corresponding to the transparent continuum, strong lensing

Fig. 12.—The fa(t) (eq. [21]) for cases with and without lensing (upper
solid and dotted lines, respectively). The lower solid and dotted lines show
the corresponding ~ffaðtÞ (eq. [22]), which is a minimized function. The small
values of the lower two lines demonstrates that an appropriate R0 can
always be chosen so that the step function model approximates a more real-
istic absorption model to high accuracy.

10 Changing � also changes our definition of R0, which is where � 
 1.
While this does affect the transit light curve somewhat, its effect on lensing
is smaller compared with that due to �0. This is because varying � typically
changes R0 by a few scale heights H, and that represents a small change to
R0=H (sinceR04H), which is the other parameter that controls the lensing
behavior.
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can lower the flux (recall from x 5.1 that lensing generally
causes a net suppression of flux during most of the transit),
while as we have discussed in the last subsection, at wave
bands corresponding to strong planetary absorption bands,
lensing has negligible effects. The contrast between contin-
uum and absorption lines is therefore decreased, and effec-
tive line strengths are therefore altered.

The magnitude of this effect can be estimated as follows:
The atmospheric lensing effect generally introduces a
decrease in absolute flux that is approximately
ðR0=R�Þ2ðH=R0Þ for planets with caustics. Strong planetary
atmosphere absorption lines, on the other hand, cause a
change in absolute flux that is approximately
ðR0=R�Þ2xðH=R0Þ, where x 
 a few. Therefore, in a plane-
tary transmission spectrum, the effective line strength is
reduced from xðH=R0Þ to 
ðx� 1ÞðH=R0Þ. The exact size
of this effect depends on details of the atmospheric structure
and composition as well as the limb-darkening function.

As noted in our Figure 3 and commented on previously
(Seager & Sasselov 2000; Hubbard et al. 2001; Brown 2001),
the transmission spectra of the close-in extrasolar giant
planets (EGPs)—including the only known transiting EGP,
HD 209458b—will be little affected by refraction because
caustics do not exist because of the small planet-star dis-
tance (see x 5.1).

Finally, we end this section by briefly commenting on the
stellar spectrum. During a planetary transit, the stellar spec-
trum changes with time, a phenomenon referred to as a
spectroscopic transit. There are at least two different effects.
The first has been discussed and observed by Queloz et al.
(2000). The planet blocks different parts of the rotating stel-
lar disk as the transit progresses, causing redshifting or blue-
shifting of the stellar lines during the transit. The second
effect arises from the fact that different parts of spectral lines
and different lines are formed at different depths in the stel-
lar atmosphere. As the planet transits different parts of the
limb-darkened stellar disk, the stellar line shapes and
strengths changes. Atmospheric lensing introduces modifi-
cations to both of the above effects because flux from differ-
ent parts of the star is magnified compared to the nonlensed
case.

7. DISCUSSION

Our findings are summarized as follows:

1. The importance of atmospheric lensing is mainly con-
trolled by two parameters: R0=H (the ratio of planet radius
to atmospheric scale height) and B � 2��0DLS=H (product
of the refractive coefficient, atmospheric density, and star-
planet separation divided by the scale height).11 The condi-
tion for strong lensing—the existence of caustics—is
described by equation (13) and depicted in Figure 3. When
applying our results, it is important to keep in mind that �0
is the atmospheric density at an impact parameter such that
the optical depth is unity (see x 6.1).
2. Strong lensing generally introduces a fractional

change in the light deficit on the order of H=R0 during a
planetary transit. We choose to discuss changes induced by
lensing in terms of fractional changes in the light deficit [f(t)
as defined in eq. (14) and shown in, e.g., Fig. 6] so that the

absolute change in observed flux can be easily estimated for
any planet-to-star size ratio.12 It works as follows: The drop
in flux during a nonlensed transit is about ðR0=R�Þ2, where
R* is the radius of the star. Strong lensing introduces an
additional absolute change in flux that is therefore about
ðR0=R�Þ2ðH=R0Þ.
3. Lensing produces a characteristic slowing down in the

dimming of the starlight at ingress (reversed at egress). This
is due to the additional photons refracted into view from the
planet’s shadow. The light curve of a lensed transit can be
mimicked to some extent by one of a nonlensed transit if
parameters for the latter are appropriately tuned. We find,
however, that the difference between the two can remain sig-
nificant especially during ingress and egress. For example,
the dotted line in Figure 6 shows a fractional difference in
the light deficit of 
0:5ðH=R0Þ at ingress or egress. When
this difference is larger than the observational uncertainties,
we should be able to constrain the lensing signal parameters
such as the atmospheric scale height, density, and refractive
coefficient (parameters such as R0 and DLS can be learned
from other features of the light curve or other observations).
The scale height and refractive coefficient will in turn give us
useful information on the temperature and chemical com-
position of the planet.
4. The strength of lensing is expected to vary significantly

with color. The primary reason is the variation of absorp-
tion and scattering with wavelength. In wave bands where
absorption or scattering is significant, caustics are effectively
hidden by extinction. Therefore, the optimal wave bands for
detecting atmospheric lensing is toward the red or near
infrared, where the inevitable Rayleigh scattering is less
strong, but away from strong absorption bands such as gas-
eous H2O or CH4. Optically thick clouds (such as enstatite
in hotter planets or H2O or CH4 ice in cooler planets) might
contribute significant opacity. See Hubbard et al. (2001) for
a detailed treatment of HD 209458b.
5. Several conditions are therefore advantageous for

detecting the lensing signal: (a) observations at wave bands
where absorption and scattering is weak, (b) a high tempera-
ture of the planet atmosphere due to a nearby hot star,
which raises the atmospheric scale height (thereby increas-
ing H=R0), and (c) DLS large enough to keep
B � 2��0DLS=H above the strong lensing threshold. Our
fiducial model (filled square in Fig. 3) provides an example
in which lensing induces a fractional change in the light defi-
cit of around 1%. For a planet that has an area about 1% of
the star, this implies that lensing causes an absolute change
of about 10�4 in the normalized flux—an observationally
relevant effect. This model can be realized by a gaseous giant
(similar to Jupiter in mass but with a slightly inflated radius
due to high temperature) about an AU away from anA star,
with observations done in red wave bands (� 
 104 Å) but
away from possible strong absorption bands such as water.
We should emphasize there is considerable uncertainty in
the size of such a planet because the radius of a hot gaseous
giant varies significantly with time (Burrows et al. 2000; see
also Murray et al. 1998 and Lin et al. 2000 on change in
orbital characteristics over time).
6. Oblateness of the planet induces an asymmetry to the

transit light curve (about the point of minimum flux), which

11 In the solar system case,DLS is replaced byDOL; see x 4.3.
12 The observed stellar flux here is always normalized by its pre- or post-

transit value.
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vanishes only when the semimajor or semiminor axis of the
planet is exactly aligned with the direction of relative
motion. The asymmetry is about 0.5%, as measured in frac-
tional light deficit (eq. [18] and Fig. 11), for a projected
oblateness or ellipticity of � ¼ 0:1 and an angle of 45�

between the semimajor axis and direction of motion. The
absolute difference in flux between ingress and egress is
therefore about 0:5%� ðR0=R�Þ2 and is, for example,
5� 10�5 for a planet that is 1=10 the size of the star.
7. For HD 209458b, the only currently known transiting

extrasolar planet, caustics and therefore strong lensing are
absent because of the very small lens-source separation (and
the resulting large scale height due to a high temperature).
Its oblateness is expected to be small,d10�3, because of the
tidal locking of its rotation to orbital motion.

In this paper we have focused on the effects of atmospher-
ic lensing and planet oblateness on the transit light curve. It
is worthwhile to briefly list other possible ‘‘ secondary ’’ fluc-
tuations to the light curve—variations in the observed flux
other than those due to the standard spherical occultation
of a star with a smooth limb-darkening profile. They can be
divided into three categories.

The first category is due to close companions of the
planet. Rings and moons, if present, induce an asymmetry
to the light curve that may be confused with oblateness.
They also introduce additional parameters that control the
light curve, making it perhaps more difficult to discern the
lensing signal. Taking Jupiter as an example, the largest
moon Ganymede has a radius of 2635 km, about 3.7% the
size of Jupiter. The samemoon of a Jupiter-like planet orbit-
ing another star would induce a fractional change of about
10�3 in the light deficit. This is about 5–10 times smaller
than the lensing or oblateness effects we found for our most
optimistic models (Figs. 6 and 11). If the moon is sufficiently
far from the planet, it might also introduce distinct signa-
tures at ingress or egress (see, e.g., Sartoretti & Schneider
1999) that can be disentangled from oblateness or lensing
effects. An opaque ring half the size of Saturn’s rings for a
gaseous giant with Rp ¼ 1:4RJ orbiting a Sun-like star
would deepen the planet transit light curve by 0.05%–1.2%
depending on the inclination of the ring (Seager & Hui
2002b). Ring effects might be isolated by looking for distinct
shapes in the transit light curve (see Brown et al. 2001) and
possibly rescattered starlight.

The second category is due to the planet itself. The planet
atmosphere can have persistent or transient disturbances
that modify the transit light curve. Such disturbances have
to be large in extent to change the light curve significantly.
For instance, small uniformly distributed clouds would not
introduce an asymmetry to the light curve. Something like
the Great Red Spot on Jupiter could conceivably be large
enough, but such disturbances cannot introduce a fractional
change in the light deficit that is larger than the ratio of the
projected atmospheric area to total planetary area, i.e.,

H=R0. It is important to emphasize that perturbations to
the atmosphere that only change the effective radius of the
planet R0 are not sufficient to wash out the lensing signal; as
we have shown in x 5.2, just tuning R0 is not enough to con-
fuse a lensed transit with a nonlensed transit that has differ-
ent parameters. Hubbard et al. (2001) pointed out that
Rayleigh scattering, in addition to causing extinction, also
produces a glow around the planet, which changes its effec-
tive size (fractional variation in size of about 1% between

different wavelengths). It would be interesting to explore
how both Rayleigh and condensate rescattered stellar pho-
tons affect the detailed shape of the transit light curve
(i.e., aside from a simple change in R0). Finally, we have
also ignored diffraction in this paper. Diffraction is likely
unimportant for most extrasolar cases of interest for two
reasons. First, the relevant parameter combination
ðR=HÞ1=2BDOL=DLS is greater than unity (see Fig. 3) and is
therefore not favorable for diffraction (see, e.g., French &
Gierasch 1976; Elliot et al. 1975). Second, the observed flux
comes from a sum over incoherent sources distributed over
the stellar surface.

The third category of secondary fluctuations is due to
complications in the star. Stellar oscillations are expected to
produce absolute changes in the flux at a 10�5 level on the
timescale of a transit.13 Also, realistic stellar profiles might
have bumps and wiggles on top of the smooth profile we
have assumed (eq. [10]). For instance, the light curve would
be modified if a planet happens to transit over a star spot
(see, e.g., Seager &Hui 2002b). The largest effect is obtained
if the spot has a size that is comparable to the planet and the
planet happens to overlap completely with the spot during
the transit. At the point where the planet and spot coincide,
the flux would basically return to unity, its pretransit value.
For example, an Earth-sized planet that happens to cross
over an Earth-sized star spot would produce this behavior,
as illustrated in the upper panel of Figure 13. This kind of
situation is probably rare, however, particularly if the
planet considered is a gaseous giant, i.e., much larger than
typical star spot (lower panel of Fig. 13). Then the absolute
change in flux in such coincident transits will be roughly the
ratio of the spot area to star area, d10�5, borrowing from
the example of the Sun. Note also that while lensing or
oblateness effects are most easily recognized at ingress or

13 See, e.g., the Web site for the proposed Kepler mission at
http://www.kepler.arc.nasa.gov.

Fig. 13.—Effect of a planet crossing an Earth-sized star spot on a stellar
disk. Top: An Earth-like planet transit. Bottom: A close-in EGP-like planet
transit.
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egress, changes to the light curve due to imperfections in the
stellar profile can occur throughout the transit. More
detailed studies would be required to see if spots produce
different signatures from lensing or oblateness if the planet
crosses them at ingress or egress. Note also that effects due
to star spots are likely not repeatable over many planetary
periods.

It is also worth emphasizing that even in cases in which
the lensing or oblateness signal is weak and therefore not
easily isolated, it could still act as an important contaminant
in confusing other signals one might be interested in, such as
detection of moons and planetary rings. From the above
discussions, it is clear that future high-precision measure-
ments of extrasolar planetary transits will present a very
interesting challenge—there are several sources of small sec-
ondary fluctuations (change in flux of 10�4 or less) that are

within observational reach and that would require some
effort to disentangle. The rewards of such efforts will be sub-
stantial—from detection of moons and rings to measuring
the (projected) planet oblateness, and therefore constrain-
ing its rotational period, and from studies of the stellar at-
mosphere to studies of the planetary atmosphere,
constraining, for instance, its scale height, temperature,
density, and composition.
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APPENDIX A

Here, we would like to motivate the density profile we adopt in this paper. We begin by the following statement of hydro-
static equilibrium of the atmosphere:

D

P ¼ ��

D

�eff ; ðA1Þ

where P is the pressure and �eff is an effective potential that is the sum of the gravitational potential � and a potential to take
into account rotation:

�eff ¼ �� 1
2!

2ðx02 þ y02Þ ; ðA2Þ

where z0 is the axis of rotation, x0 and y0 are the perpendicular axes (we will use x0i, i ¼ 3, 1, 2 to denote them), and ! is the angu-
lar speed. For an isothermal atmosphere where P / �, the above implies

� / exp ��effð Þ : ðA3Þ

We note that planetary atmospheres are only approximately isothermal. Deviations such as temperature inversion are known
to exist (see, e.g., Jones 1999).

The question then reduces to what kind of gravitational potential one expects for a general rotating figure of equilibrium.
For bodies that are not too aspherical, we can expand the gravitational potential using the Legendre polynomials (see, e.g.,
Danby 1962; Chandrasekhar 1969)

� ¼ �GMp

r0
1� J2

r02
1

2
3 cos2 �� 1
� �

� . . .

� 	
; ðA4Þ

where Mp is the planet mass, J2 is some constant coefficient that is presumably small, h is the angle between the radial vector
and the z0-axis, and r0 ¼ x02 þ y02 þ z02ð Þ1=2. It is sufficient to illustrate our argument using only the first term—it is possible to
generalize to include higher order terms in the potential expansion.

We are interested in the form of �eff when r0 ¼ Rð1þ Þ with 5 1, where R is approximately the planet radius. We are also
interested in cases in which the angular speed ! is in some sense small—the relevant parameter to consider is
R3!2=ð2GMpÞ � �5 1. One can then express �eff as

�eff ¼ � GMp

r0
� 1

2
!2 x02 þ y02
� �


 � 2
GMp

R
þ GMp

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ z02

p
� 1

2
!2ðx02 þ y02Þ


 � 2
GMp

R
þ GMp

R2

x02

ð1þ �Þ2
þ y02

ð1þ �Þ2
þ z02

" #1=2
; ðA5Þ

which is exact up to terms of first order in  and �. Clearly, �eff is a function of r alone, where r2 �
P

i x
02
i =a

2
i , where

a1 ¼ a2 ¼ 1þ � and a3 ¼ 1. In the above derivation a1 ¼ a2 6¼ a3. A rotating body of self-gravitating fluid can actually be tri-
axial in general, but triaxiality is likely unimportant for the rotational velocities of interest here (see Chandrashekhar 1969;
Bertotti & Fasinella 1990).
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Putting the above into equation (A3), we obtain

� ¼ �0 exp
�ðr� R0Þ

H

� 	
; ðA6Þ

where H�1 is the derivative of the effective potential and �0 is the atmospheric density at r ¼ R0. The choice of R0 is arbitrary
at this point. In x 2.1, we choose it to be the radius below which the atmosphere is completely opaque.

Finally, note that the principle axes defined by x0i are not necessarily lined up with the axes defined by xi in x 2.1 by the lens-
ing geometry. The two sets are generally related by a rotation. Since there is freedom in rotating x1 and x2 (i.e., the lensing
geometry only picks out x3 or the z-direction), we can without loss of generality relate the two sets of coordinates by two rota-
tion matrices: x0 ¼ Rz0 ð
Þ xRx0 ð�Þ x x, where Rz0 ð
Þ is a rotation about x03 by angle 
 and Rx0 ð�Þ is a rotation about x01 by angle
�. Using a1 ¼ a3ð1þ �AÞ and a2 ¼ a3ð1þ �BÞ and assuming that �A and �B are small (in our above derivation, �A ¼ �B ¼ �, i.e.,
an oblate spheroid; our derivation below continues to work even if this were violated), we can write

r2 ¼ ~zz2 þ 1� 2�A cos2 
 � 2�B sin
2 


� �
x2 þ 4ð�A � �BÞxyþ 1� 2�A sin2 
 cos2 � � 2�B cos

2 
 cos2 �
� �

y2 ; ðA7Þ

where ~zz ¼ ½1þOð�A; �BÞ�½zþOð�A; �BÞxþOð�A; �BÞy�.
Now, recall that the quantity that we are interested in, the deflection angle hD, is given by equation (2):

�D ¼

D

?
R1
�1 ��ðrÞdz. One can clearly change the variable of integration from z to ~zz,:R1

�1 ��0 exp½�ðr� R0Þ=H�dz ¼
R1
�1 ��0 exp½�ðr� R0Þ=H�d~zz, where we have absorbed the slight change in multiplicative fac-

tor into a redefinition of �0. Moreover, since ~zz is a dummy integration variable, we could as well rename ~zz ! z in equation
(A7).

Consider next the terms involving x and y in equation (A7). We could easily perform a rotation to put them in the simple
form: ð1� �Þx2 þ ð1þ �Þy2 if we absorb multiplicative factors into a redefinition ofH (such multiplicative factors would affect
z also, but they can once again be absorbed into redefinition of �0). To be more specific, let us consider the important case in
which �A ¼ �B. Then, the x and y terms reduce to

1� 2�Að Þx2 þ 1� 2�A cos2 �
� �

y2 ¼ 1� �A 1þ cos2 �
� �� �

ð1� �Þx2 þ ð1þ �Þy2
� �

; ðA8Þ

where

� ¼ �Að1� cos2 �Þ : ðA9Þ

For a random distribution of angle �, we expect on the average � ¼ �A=2. It is unclear, however, if � should be randomly dis-
tributed. The solar system planets do seem to have rotational axes pointing in all kinds of directions with respect to their orbi-
tal planes. The quantity �A describes directly the shape of the planet: contours of constant density obey
z02 þ ðx02 þ y02Þ=ð1þ �AÞ2 ¼ constant. In other words, oblateness, defined by the ratio ða1 � a3Þ=ða1 þ a3Þ, is given by �A=2 to
the lowest order. One can view � as a kind of projected ellipticity or oblateness.

To summarize, with suitable rescaling of z,H, and �0, we have

�D ¼
Z 1

�1
��0 exp

�ðr� R0Þ
H

� 	
dz; r2 ¼ ð1� �Þb21 þ ð1þ �Þb22 þ z2 ; ðA10Þ

where we have equated x and ywith impact parameters b1 and b2 as defined in x 2.1.

APPENDIX B

We discuss here how to solve equation (5) and how to find the caustic and critical curve. Equation (5) has a form that is
exactly analogous to elliptic potentials sometimes used in modeling gravitational lenses. The main trick for solving this type of
lensing equation is taken directly from Schneider, Ehlers, & Falco (1992), but we provide additional comments here for cases
that require special attention.

Equation (5) is a set of two equations for �1I and �
2
I , given the source position hS. Eliminating  (u) from the two equations,

one obtains

�2I ¼
ð1� �Þ�1I�2S

ð1þ �Þ�1S � 2��1I
: ðB1Þ

This gives us �2I as a function of �1I , and substituting into the first component of the lensing equation leaves us with a single
equation for �1I :

�1S ¼ �1I þ ð1� �Þ�1I ðuÞ ; ðB2Þ

where u is a function of �1I and �
2
I (now a function of �1I ) as well. The lensing problem is therefore no more complicated than

one with spherical symmetry. Once �1I is solved for, �2I can be obtained from equation (B1).
For the case of �2S ¼ 0, the above solution always puts �2I ¼ 0. There is, however, another possibility when multiple images

are allowed. Examining the analog of equation (B2) for the second component, one can see that the other option for a vanish-
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ing �2S is to have

1þ ð1þ �Þ ðuÞ ¼ 0 : ðB3Þ

This gives a single equation for �2I if one uses the fact that �
1
I ¼ ð1þ �Þ�1Sð2�Þ

�1. This is obtained from eliminating  (u) from
the two components of equation (5) but noting �2S ¼ 0 and assuming �2I 6¼ 0.

There is another special case: �1S ¼ 0. In this case, equation (B2) tells us that there are two possibilities: 1þ ð1� �Þ ðuÞ ¼ 0
or �1I ¼ 0. The former is handled automatically with the computational procedure above. The latter requires more care: one
can solve

�2S ¼ �2I þ ð1þ �Þ�2I ðuÞ ðB4Þ

for �2I by setting �
1
I ¼ 0. Doing so ensures that all possible images are uncovered.

To find the caustic and critical curve, we solveA�1 ¼ 0 using equation (6):

v ¼ �1

� ~  
1þ 2 þ 1� �2

� �
 2 þ 1� �2

� �
u2 ~  þ u2 ~  

� �
: ðB5Þ

This gives us v for a given u. However, from the definition of v and u in equation (6), it is clear that only jvj 	 u2 is physical.
Therefore, the caustic or critical curve corresponds to solutions of v given u that satisfies jvj 	 u2. Strong lensing occurs when
such solutions exist. For each pair of v and u, it is easy to solve for �iI from their definitions:

�1I ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � v

2ð1� �Þ

s
; �2I ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v

2ð1þ �Þ

s
: ðB6Þ

Given the critical curve defined by �iI , one can then solve for the caustic using the lens mapping (eq. [5]). We note that the above
two expressions were interchanged bymistake in Schneider et al. (1992).
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